This commit is contained in:
Joseph Montanaro 2023-01-02 10:34:30 -08:00
parent 8715e5e354
commit 73f70e4fa9
15 changed files with 813 additions and 823 deletions

4
.gitignore vendored
View File

@ -1,3 +1 @@
*.exe /target
profile_results.txt
callgrind.out.*

131
Cargo.lock generated Normal file
View File

@ -0,0 +1,131 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3
[[package]]
name = "cfg-if"
version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"
[[package]]
name = "cup"
version = "0.1.0"
dependencies = [
"enum-map",
"rand",
]
[[package]]
name = "enum-map"
version = "2.4.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "50c25992259941eb7e57b936157961b217a4fc8597829ddef0596d6c3cd86e1a"
dependencies = [
"enum-map-derive",
]
[[package]]
name = "enum-map-derive"
version = "0.11.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2a4da76b3b6116d758c7ba93f7ec6a35d2e2cf24feda76c6e38a375f4d5c59f2"
dependencies = [
"proc-macro2",
"quote",
"syn",
]
[[package]]
name = "getrandom"
version = "0.2.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c05aeb6a22b8f62540c194aac980f2115af067bfe15a0734d7277a768d396b31"
dependencies = [
"cfg-if",
"libc",
"wasi",
]
[[package]]
name = "libc"
version = "0.2.139"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "201de327520df007757c1f0adce6e827fe8562fbc28bfd9c15571c66ca1f5f79"
[[package]]
name = "ppv-lite86"
version = "0.2.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5b40af805b3121feab8a3c29f04d8ad262fa8e0561883e7653e024ae4479e6de"
[[package]]
name = "proc-macro2"
version = "1.0.49"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "57a8eca9f9c4ffde41714334dee777596264c7825420f521abc92b5b5deb63a5"
dependencies = [
"unicode-ident",
]
[[package]]
name = "quote"
version = "1.0.23"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8856d8364d252a14d474036ea1358d63c9e6965c8e5c1885c18f73d70bff9c7b"
dependencies = [
"proc-macro2",
]
[[package]]
name = "rand"
version = "0.8.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "34af8d1a0e25924bc5b7c43c079c942339d8f0a8b57c39049bef581b46327404"
dependencies = [
"libc",
"rand_chacha",
"rand_core",
]
[[package]]
name = "rand_chacha"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e6c10a63a0fa32252be49d21e7709d4d4baf8d231c2dbce1eaa8141b9b127d88"
dependencies = [
"ppv-lite86",
"rand_core",
]
[[package]]
name = "rand_core"
version = "0.6.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ec0be4795e2f6a28069bec0b5ff3e2ac9bafc99e6a9a7dc3547996c5c816922c"
dependencies = [
"getrandom",
]
[[package]]
name = "syn"
version = "1.0.107"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1f4064b5b16e03ae50984a5a8ed5d4f8803e6bc1fd170a3cda91a1be4b18e3f5"
dependencies = [
"proc-macro2",
"quote",
"unicode-ident",
]
[[package]]
name = "unicode-ident"
version = "1.0.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "84a22b9f218b40614adcb3f4ff08b703773ad44fa9423e4e0d346d5db86e4ebc"
[[package]]
name = "wasi"
version = "0.11.0+wasi-snapshot-preview1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9c8d87e72b64a3b4db28d11ce29237c246188f4f51057d65a7eab63b7987e423"

10
Cargo.toml Normal file
View File

@ -0,0 +1,10 @@
[package]
name = "cup"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
"enum-map" = "2.4.2"
"rand" = "0.8.5"

View File

@ -1,88 +0,0 @@
import algorithm
import fixedseq, game
proc nextPermutation(x: var FixedSeq): bool =
# copied shamelessly from std/algorithm.nim
if x.len < 2:
return false
var i = x.high
while i > 0 and x[i - 1] >= x[i]:
dec i
if i == 0:
return false
var j = x.high
while j >= i and x[j] <= x[i - 1]:
dec j
swap x[j], x[i - 1]
x.reverse(i, x.high)
result = true
proc prevPermutation(x: var FixedSeq): bool =
# copied shamelessly from std/algorithm.nim
if x.len < 2:
return false
var i = x.high
while i > 0 and x[i - 1] <= x[i]:
dec i
if i == 0:
return false
x.reverse(i, x.high)
var j = x.high
while j >= i and x[j - 1] < x[i - 1]:
dec j
swap x[i - 1], x[j]
result = true
iterator allPermutations*(x: FixedSeq): FixedSeq =
# returns all permutations of a given seq. Order is wonky but we don't care.
var workingCopy = x
yield workingCopy
while workingCopy.nextPermutation: # this mutates workingCopy
yield workingCopy
workingCopy = x
while workingCopy.prevPermutation:
yield workingCopy
iterator allDigits*(lo, hi, size: Natural): auto =
if size > 0: # otherwise we get an infinite loop
var digits: FixedSeq[5, int]
for i in 0 ..< size:
digits.add(lo)
var complete = false
while not complete:
yield digits
for i in countdown(digits.high, 0):
if digits[i] < hi:
inc digits[i]
break
elif i == 0: # since this is the last digit to be incremented, we must be done
complete = true
else:
digits[i] = lo
iterator possibleFutures*(dice: ColorStack): auto =
# iterate over all possible sequences of die rolls. Each outcome
# is returned as a 5-sequence of (color, number) tuples.
for perm in dice.allPermutations:
for digits in allDigits(1, 3, dice.len):
var f: FixedSeq[5, Die]
for i in 0'u8 .. dice.high:
f.add((color: perm[i], value: digits[i]))
yield f

16
cup.nim
View File

@ -1,16 +0,0 @@
import game, simulation, ui
when isMainModule:
let config = parseArgs()
var b: Board
b.setState(config.state)
let legScores = b.getLegScores
let gameScores = b.randomGames(1_000_000)
echo b.showSpaces(1, 16)
echo "\nCurrent leg probabilities:"
echo legScores.showPercents()
echo "\nFull game probabilities (1M simulations):"
echo gameScores.showPercents()

View File

@ -1,4 +0,0 @@
--threads: on
--d: release
--d: lto
--opt: speed

View File

@ -1,149 +0,0 @@
import random
type
FixedSeq*[Size: static range[0..255], Content] = object
data: array[Size, Content]
len*: uint8
proc `$`*(s: FixedSeq): string =
result.add("FixedSeq[")
for i, item in s:
if i != 0:
result.add(", ")
result.add($item)
result.add("]")
proc `[]`*(s: FixedSeq, idx: Natural): FixedSeq.Content =
when not defined(danger):
if idx.uint8 >= s.len:
raise newException(IndexDefect, "index " & $idx & " is out of bounds.")
s.data[idx]
proc `[]`*(s: var FixedSeq, idx: Natural): var FixedSeq.Content =
when not defined(danger):
if idx.uint8 >= s.len:
raise newException(IndexDefect, "index " & $idx & " is out of bounds.")
s.data[idx]
proc `[]`*(s: FixedSeq, idx: BackwardsIndex): auto =
when not defined(danger):
if s.len == 0:
raise newException(IndexDefect, "index out of bounds, the container is empty.") # matching stdlib again
s.data[s.len - idx.uint8]
proc `[]=`*(s: var FixedSeq, idx: Natural, v: FixedSeq.Content) =
when not defined(danger):
if idx.uint8 >= s.len:
raise newException(IndexDefect, "index " & $idx & " is out of bounds.")
s.data[idx] = v
proc high*(s: FixedSeq): auto =
result = s.len - 1
proc low*(s: FixedSeq): auto =
result = case s.len
of 0: 0 # a bit weird but it's how the stdlib seq works
else: s.len - 1
iterator items*(s: FixedSeq): auto =
for i in 0'u8 ..< s.len:
yield s.data[i]
iterator asInt*(s: FixedSeq): int8 =
for i in 0'u8 ..< s.len:
yield int8(s.data[i]) # now we do have to convert
iterator pairs*(s: FixedSeq): auto =
var count = 0
for c in s:
yield (count, c)
inc count
proc add*(s: var FixedSeq, v: FixedSeq.Content) =
s.data[s.len] = v # will raise exception if out of bounds
inc s.len
proc insert*(s: var FixedSeq, v: FixedSeq.Content, idx: Natural = 0) =
for i in countdown(s.len - 1, idx.uint8):
swap(s.data[i], s.data[i + 1]) # will also raise exception if out of bounds
s.data[idx] = v
inc s.len
proc delete*(s: var FixedSeq, idx: Natural) =
when not defined(danger):
if idx.uint8 >= s.len:
raise newException(IndexDefect, "index " & $idx & " is out of bounds.")
dec s.len
for i in idx.uint8 ..< s.len:
swap(s.data[i], s.data[i + 1])
proc clear*(s: var FixedSeq) =
s.len = 0
proc find*(s: FixedSeq, needle: FixedSeq.Content): int =
for i, v in s.data:
if v == needle:
return i
return -1
proc reverse*(s: var FixedSeq; first, last: Natural) =
# copied shamelessly from std/algorithm.nim
var x = first
var y = last
while x < y:
swap(s[x], s[y])
inc x
dec y
proc shuffle*(s: var FixedSeq, r: var Rand) =
when not defined(danger):
if s.len < s.data.len.uint8:
raise newException(IndexDefect, "Cannot shuffle a partially-full FixedSeq")
r.shuffle(s.data)
proc shuffle*(s: var FixedSeq) =
when not defined(danger):
if s.len < s.data.len.uint8:
raise newException(IndexDefect, "Cannot shuffle a partially-full FixedSeq")
shuffle(s.data)
proc moveSubstack*(src, dst: var FixedSeq; start: Natural) =
var count = 0'u8 # have to track this separately apparently
for idx in start ..< src.len:
swap(src.data[idx], dst.data[dst.len + count])
inc count
dst.len += count
src.len -= count
proc moveSubstackPre*(src, dst: var FixedSeq; start: Natural) =
let ssLen = src.len - start.uint8 # length of substack
for i in countdown(dst.len - 1, 0):
swap(dst.data[i], dst.data[i + ssLen])
var count = 0
for i in start ..< src.len:
swap(src.data[i], dst.data[count])
inc count
dst.len += ssLen
src.len -= ssLen

172
game.nim
View File

@ -1,172 +0,0 @@
import hashes, options
import fixedseq
type
Color* = enum
cRed, cGreen, cBlue, cYellow, cPurple
ColorStack* = FixedSeq[5, Color]
const
colorNames: array[Color, string] =
["Red", "Green", "Blue", "Yellow", "Purple"]
colorAbbrevs: array[Color, char] = ['R', 'G', 'B', 'Y', 'P']
proc `$`*(c: Color): string =
result = colorNames[c]
proc abbrev*(c: Color): char =
result = colorAbbrevs[c]
proc `$`*(s: ColorStack): string =
result.add("St@[")
for i, color in s:
result.add($color)
if i.uint8 < s.high:
result.add(", ")
result.add("]")
type
Die* = tuple[color: Color, value: int]
Tile* = enum
tBackward = -1,
tForward = 1
Square* = object
camels*: ColorStack
tile*: Option[Tile]
GameState* = object
dice*: array[Color, bool]
camels*: FixedSeq[5, tuple[c: Color, p: range[1..16]]]
tiles*: FixedSeq[8, tuple[t: Tile, p: range[1..16]]] # max 8 players, so max 8 tiles
Board* = object
squares*: array[1..16, Square]
camels*: array[Color, range[1..16]]
diceRolled*: array[Color, bool]
winner*: Option[Color]
gameOver*: bool
# use a template here for better inlining
template `[]`*[T](b: var Board, idx: T): var Square =
b.squares[idx]
# apparently we need separate ones for mutable and non-mutable
template `[]`*[T](b: Board, idx: T): Square =
b.squares[idx]
proc hash*(b: Board): Hash =
var h: Hash = 0
# there could be a tile anywhere so we have to check all squares
for i, sq in b.squares:
if sq.camels.len > 0 or sq.tile.isSome:
h = h !& i
if sq.tile.isSome:
h = h !& int(sq.tile.get) * 10 # so it isn't confused with a camel
else:
for c in sq.camels.asInt:
h = h !& c
result = !$h
proc leader*(b: Board): Color =
let leadSquare = max(b.camels)
result = b[leadSquare].camels[^1]
proc display*(b: Board, start, stop: int) =
for i in start..stop:
let sq = b.squares[i]
let lead = $i & ": "
if sq.tile.isSome:
stdout.writeLine($lead & $sq.tile.get)
else:
stdout.writeLine($lead & $sq.camels)
echo ""
proc setState*(b: var Board; state: GameState) =
for sq in b.squares.mitems:
if sq.camels.len > 0:
sq.camels.clear()
elif sq.tile.isSome:
sq.tile = none[Tile]()
for (color, dest) in state.camels: # note that `camels` is ordered, as this determines stacking
b[dest].camels.add(color)
b.camels[color] = dest
for (tile, dest) in state.tiles:
b[dest].tile = some(tile)
b.diceRolled = state.dice
proc getState*(b: Board): GameState =
var camelCount = 0
let start = min(b.camels)
for pos in start .. b.squares.high:
let sq = b[pos]
for color in sq.camels:
result.camels.add((c: color, p: pos))
camelCount += 1
if sq.tile.isSome:
result.tiles.add((t: sq.tile.get, p: pos))
if camelCount >= 5:
break
result.dice = b.diceRolled
proc diceRemaining*(b: Board): ColorStack =
for color, isRolled in b.diceRolled:
if not isRolled: result.add(color)
proc resetDice*(b: var Board) =
for c in Color:
b.diceRolled[c] = false
proc advance*(b: var Board, die: Die) =
let
(color, roll) = die
startPos = b.camels[color]
var endPos = startPos + roll
if endPos > 16: # camel has passed the finish line
b.winner = some(b[startPos].camels[^1])
b.gameOver = true
return
var prepend = false
if b[endPos].tile.isSome: # adjust position (and possibly stacking) to account for tile
let t = b[endPos].tile.get
endPos += int(t)
if t == tBackward: prepend = true
let stackStart = cast[uint8](b[startPos].camels.find(color)) # cast is safe here, as long as b.camels is valid
if prepend:
b[startPos].camels.moveSubstackPre(b[endPos].camels, stackStart)
let stackLen = b[startPos].camels.len - stackStart
for i in 0'u8 ..< stackLen:
# we know how many camels we added to the bottom, so set the position for each of those
b.camels[b[endPos].camels[i]] = endPos
else:
let dstPrevHigh = b[endPos].camels.high
b[startPos].camels.moveSubstack(b[endPos].camels, stackStart)
# the camels that have moved start immediately after the previous high camel
for i in (dstPrevHigh + 1) .. b[endPos].camels.high:
b.camels[b[endPos].camels[i]] = endPos
b.diceRolled[color] = true

View File

@ -1,151 +0,0 @@
import cpuinfo, math, options, random, sequtils, tables
import combinators, game, fixedseq
type
ScoreSet* = array[Color, int]
WinPercents* = array[Color, float]
ScoreSpread = object
lo*: array[Color, float]
hi*: array[Color, float]
LegResults* = tuple[scores: ScoreSet, endStates: CountTable[Board]]
proc update*(scores: var ScoreSet, toAdd: ScoreSet) =
for i, s in toAdd:
scores[i] += s
proc display*(scores: ScoreSet) =
let total = scores.sum
for color, score in scores:
let line = $color & ": " & $round(100 * scores[color] / total, 2) & '%'
stdout.writeLine(line)
stdout.flushFile()
# echo color, ": ", round(100 * scores[color] / total, 2), '%'
proc percents*(scores: ScoreSet): WinPercents =
let total = scores.sum
for c, score in scores:
result[c] = score / total
# ======================
# Single-leg simulations
# ======================
iterator legEndStates(b: Board): Board =
var diceRemaining: ColorStack
for i, c in b.diceRolled:
if not c: diceRemaining.add(i)
let origState = b.getState
var prediction = b
for future in possibleFutures(diceRemaining):
# var prediction = b # make a copy so we can mutate
for dieRoll in future:
prediction.advance(dieRoll)
yield prediction
prediction.setState(origState)
proc getLegScores*(b: Board): ScoreSet =
# special case if all dice have been rolled
if allIt(b.diceRolled, it):
inc result[b.leader]
return result
for prediction in b.legEndStates:
inc result[prediction.leader]
# =====================
# Full-game simulations
# =====================
proc randomGame*(b: Board, r: var Rand): Color =
var projection = b
var dice = projection.diceRemaining
while true:
dice.shuffle(r)
for color in dice:
projection.advance((color, r.rand(1..3)))
if projection.gameOver:
return projection.winner.get
# if we started with <5 dice, we need to reset for the next full leg
if dice.len < 5:
projection.resetDice()
dice = projection.diceRemaining
proc randomGamesWorker(b: Board, count: Natural, r: var Rand): ScoreSet =
for i in 1 .. count:
let winner = b.randomGame(r)
inc result[winner]
# =======================
# Multithreading nonsense
# =======================
type WorkerArgs = object
board: Board
count: Natural
seed: int64
# have to do this at the module level so it can be shared
var gamesChannel: Channel[ScoreSet]
gamesChannel.open()
proc randomGamesThread(args: WorkerArgs) =
var r = initRand(args.seed)
let scores = randomGamesWorker(args.board, args.count, r)
gamesChannel.send(scores)
proc randomGames*(b: Board, count: Natural, parallel = true, numThreads = 0): ScoreSet =
randomize()
if not parallel:
var r = initRand(rand(int64))
return randomGamesWorker(b, count, r)
let numThreads =
if numThreads == 0:
countProcessors()
else:
numThreads
var workers = newSeq[Thread[WorkerArgs]](numThreads)
for i, w in workers.mpairs:
var numGames = int(floor(count / numThreads))
if i < (count mod numThreads):
numGames += 1
let args = WorkerArgs(board: b, count: numGames, seed: rand(int64))
createThread(w, randomGamesThread, args)
for i in 1 .. numThreads:
let scores = gamesChannel.recv()
result.update(scores)
proc randomSpread*(b: Board; nTests, nSamples: Natural): ScoreSpread =
for s in result.lo.mitems:
s = 1
for i in 0 ..< nTests:
let scores = b.randomGames(nSamples)
let total = scores.sum
for color, score in scores:
let pct = score / total
if pct < result.lo[color]:
result.lo[color] = pct
if pct > result.hi[color]:
result.hi[color] = pct

380
src/game.rs Normal file
View File

@ -0,0 +1,380 @@
use enum_map::{Enum, EnumMap};
use rand::{
Rng,
seq::SliceRandom,
distributions::{Distribution, Uniform},
};
use crate::stack::Stack;
#[derive(Debug, Copy, Clone, Eq, PartialEq, Default, Enum)]
pub enum Color {
#[default] Red, Green, Blue, Yellow, Purple,
}
// const COLORS: Stack<Color, 5> = Stack::from_array([
// Color::Red,
// Color::Green,
// Color::Blue,
// Color::Yellow,
// Color::Purple,
// ]);
const COLORS: [Color; 5] = [
Color::Red,
Color::Green,
Color::Blue,
Color::Yellow,
Color::Purple,
];
type ColorStack = Stack<Color, 5>;
#[derive(Debug, Copy, Clone)]
pub enum Tile {
Forward,
Backward,
}
#[derive(Debug, Copy, Clone)]
pub enum Square {
Camels(ColorStack),
Tile(Tile),
}
impl Square {
fn assume_stack(&self) -> &ColorStack {
match self {
Square::Camels(stack) => stack,
_ => panic!("Attempted to use the stack from a non-stack square"),
}
}
fn assume_stack_mut(&mut self) -> &mut ColorStack {
match self {
Square::Camels(stack) => stack,
_ => panic!("Attempted to use the stack from a non-stack square"),
}
}
}
impl Default for Square {
fn default() -> Self {
Square::Camels(ColorStack::new())
}
}
#[derive(Debug, Default, Copy, Clone)]
pub struct Game {
squares: [Square; 16],
dice: EnumMap<Color, bool>,
camels: EnumMap<Color, usize>,
}
impl Game {
pub fn new() -> Self {
Self::default()
}
// new game with random starting positions
pub fn new_random() -> Self {
let mut game = Self::default();
let mut rng = rand::thread_rng();
let mut dice = *&COLORS;
dice.shuffle(&mut rng);
for color in dice {
let roll = rng.gen_range(1..=3);
game.squares[roll - 1].assume_stack_mut().push(color);
game.camels[color] = roll - 1;
}
game
}
pub fn set_state(&mut self, camels: &[(Color, usize); 5], dice: &EnumMap<Color, bool>) {
for i in 0..16 {
self.squares[i] = match self.squares[i] {
Square::Camels(mut stack) => {
stack.clear();
Square::Camels(stack)
},
_ => Square::Camels(Stack::new())
};
}
for square in self.squares {
assert_eq!(square.assume_stack().len(), 0)
}
self.dice = *dice;
for &(color, sq) in camels {
self.squares[sq].assume_stack_mut().push(color);
self.camels[color] = sq;
}
}
pub fn get_state(&self) -> ([(Color, usize); 5], EnumMap<Color, bool>) {
let mut state = [(Color::Red, 0); 5];
let mut j = 0;
for (sq_idx, square) in self.squares.iter().enumerate() {
if let Square::Camels(stack) = square {
for camel in stack.iter() {
state[j] = (*camel, sq_idx);
j += 1;
}
}
}
(state, self.dice)
}
// returns winner if there is one
pub fn advance(&mut self, die: Color, roll: usize) -> Option<Color> {
let src_sq = self.camels[die];
let dst_sq = src_sq + roll;
if dst_sq >= 16 {
self.dice[die] = true;
return self.squares[src_sq].assume_stack().last().copied();
}
// special case when the destination square is the same as the source square
if let Square::Tile(Tile::Backward) = self.squares[dst_sq] {
if roll == 1 {
let src_stack = self.squares[src_sq].assume_stack_mut();
let slice_start = src_stack.iter().position(|&c| c == die).unwrap();
src_stack.shift_slice_under(slice_start);
}
}
else {
// we have to split self.squares into two slices using split_at_mut, otherwise
// rustc complains that we're trying to use two mutable references to the same value
let (left, right) = self.squares.split_at_mut(src_sq + 1);
let src_stack = left[src_sq].assume_stack_mut();
let slice_start = src_stack.iter().position(|&c| c == die).unwrap();
// since `right` starts immediately after the source square, the index of the
// destination square will be roll - 1 (e.g. if roll is 1, dst will be right[0])
let (dst_rel_idx, prepend) = match right[roll - 1] {
Square::Tile(Tile::Forward) => (roll, false), // roll - 1 + 1
Square::Tile(Tile::Backward) => (roll - 2, true), // roll is guaranteed to be >= 2 since we already handled roll == 1
_ => (roll - 1, false),
};
let dst_stack = right[dst_rel_idx].assume_stack_mut();
let dst_true_idx = src_sq + 1 + dst_rel_idx; // src_sq + 1 was the original split boundary, so add the relative index to that to get the true index
if prepend {
let slice_len = src_stack.len() - slice_start;
src_stack.move_slice_under(dst_stack, slice_start);
for i in 0..slice_len {
self.camels[dst_stack[i]] = dst_true_idx;
}
}
else {
let dst_prev_len = dst_stack.len();
src_stack.move_slice(dst_stack, slice_start);
for i in dst_prev_len..dst_stack.len() {
self.camels[dst_stack[i]] = dst_true_idx;
}
}
}
self.dice[die] = true;
None
}
fn finish_leg_random(&mut self) -> Option<Color> {
let mut rng = rand::thread_rng();
let mut leg_dice: Stack<Color, 5> = Stack::new();
for (color, rolled) in self.dice {
if !rolled {
leg_dice.push(color);
}
}
(&mut leg_dice[..]).shuffle(&mut rng);
for color in leg_dice.iter() {
let roll = rng.gen_range(1..=3);
if let Some(winner) = self.advance(*color, roll) {
return Some(winner);
}
}
None
}
fn finish_game_random(&mut self) -> Color {
if let Some(winner) = self.finish_leg_random() {
return winner;
}
// we are now guaranteed to be at the start of a new leg,
// so we don't need to check the dice state
let mut rng = rand::thread_rng();
let roll_dist = Uniform::from(1..=3);
let mut dice = COLORS; // makes a copy of the constant
loop {
// easiest if we shuffle at the start of the leg
dice.shuffle(&mut rng);
for i in 0..5 {
let roll = roll_dist.sample(&mut rng);
if let Some(winner) = self.advance(dice[i], roll) {
return winner;
}
}
}
}
pub fn project_outcomes(&self, count: usize) -> EnumMap<Color, usize> {
let (orig_camels, orig_dice) = self.get_state();
let mut projection = *self;
let mut scores: EnumMap<Color, usize> = EnumMap::default();
for i in 0..count {
let winner = projection.finish_game_random();
scores[winner] += 1;
projection.set_state(&orig_camels, &orig_dice);
}
scores
}
}
#[cfg(test)]
mod test {
use super::*;
use Color::*;
#[test]
fn test_advance() {
let mut game = Game::new();
// all dice are false (not rolled) to start with
assert_eq!(game.dice.values().any(|&v| v), false);
let camel_state = [
(Blue, 0),
(Yellow, 0),
(Red, 1),
(Green, 2),
(Purple, 2),
];
game.set_state(&camel_state, &Default::default());
assert_eq!(game.squares[0].assume_stack(), &Stack::from([Blue, Yellow]));
assert_eq!(game.camels[Blue], 0);
assert_eq!(game.camels[Yellow], 0);
assert_eq!(game.squares[1].assume_stack(), &Stack::from([Red]));
assert_eq!(game.camels[Red], 1);
assert_eq!(game.squares[2].assume_stack(), &Stack::from([Green, Purple]));
assert_eq!(game.camels[Green], 2);
assert_eq!(game.camels[Purple], 2);
// BY, R, GP
game.advance(Yellow, 2);
assert_eq!(game.dice[Yellow], true);
assert_eq!(game.camels[Yellow], 2);
assert_eq!(game.squares[2].assume_stack(), &Stack::from([Green, Purple, Yellow]));
// B, R, GPY
game.advance(Red, 2);
assert_eq!(game.dice[Red], true);
assert_eq!(game.camels[Red], 3);
// B, _, GPY, R
game.advance(Purple, 1);
assert_eq!(game.dice[Purple], true);
assert_eq!(game.squares[3].assume_stack(), &Stack::from([Red, Purple, Yellow]));
// B, _, G, RPY
}
#[test]
fn test_new_random() {
for _ in 0..100 {
let game = Game::new_random();
for (camel, i) in game.camels {
assert!(i < 3); // since we've only rolled the die once for each camel
let stack = game.squares[i].assume_stack();
assert!(stack[..].contains(&camel));
}
}
}
#[test]
fn test_finish_leg() {
let mut game = Game::new();
let camel_state = [
(Purple, 0),
(Blue, 0),
(Green, 1),
(Red, 1),
(Yellow, 2),
];
game.set_state(&camel_state, &Default::default());
// PB, G, RY
game.advance(Green, 2);
// PB, _, RY, G
game.advance(Purple, 1);
// _, PB, RY, G
// since this is randomized, we should do it a bunch of times to make sure
for _ in 0..100 {
let mut projection = game; // copy?
assert_eq!(projection.squares[1].assume_stack(), &Stack::from([Purple, Blue]));
projection.finish_leg_random();
// since we already rolled Green, it can't have moved
assert_eq!(projection.camels[Green], 3);
// likewise purple
assert_eq!(projection.camels[Purple], 1);
// blue, red,and yellow, on the other hand, *must* have moved
assert_ne!(projection.camels[Blue], 1);
assert_ne!(projection.camels[Red], 2);
assert_ne!(projection.camels[Yellow], 2);
}
}
#[test]
fn test_finish_leg_winner() {
let mut game = Game::new();
let camel_state = [
(Green, 13),
(Red, 14),
(Purple, 14),
(Blue, 15),
(Yellow, 15),
];
game.set_state(&camel_state, &Default::default());
// since there are no tiles involved, and multiple camels are on 15, there must be a winner
assert!(matches!(game.finish_leg_random(), Some(_)));
}
#[test]
fn test_project_outcomes() {
let mut game = Game::new();
let camel_state = [
(Blue, 1),
(Green, 2),
(Yellow, 2),
(Purple, 4),
(Red, 10),
];
game.set_state(&camel_state, &Default::default());
// _, B, GY, _, P, _, _, _, _, _, R
let scores = game.project_outcomes(10_000);
let mut max = 0;
let mut winner = Blue; // just "anything that's not red"
for (color, score) in scores {
if score > max {
max = score;
winner = color;
}
}
assert_eq!(winner, Red);
}
}

26
src/main.rs Normal file
View File

@ -0,0 +1,26 @@
use std::time::Instant;
mod stack;
mod game;
use game::Game;
fn main() {
let n_games = 10_000_000;
let start = Instant::now();
let game = Game::new_random();
let _scores = game.project_outcomes(n_games);
let end = Instant::now();
let elapsed = end.duration_since(start);
let secs = elapsed.as_secs();
let hundredths = elapsed.subsec_millis() / 10; // technically not accurate but good enough for now
let rate = (10_000_000 as f64) / elapsed.as_secs_f64();
println!("Test completed:");
println!("{n_games} in {secs}.{hundredths:02} seconds", );
println!("Games per second: {rate}");
}

265
src/stack.rs Normal file
View File

@ -0,0 +1,265 @@
use std::ops::{Index, IndexMut, RangeFull};
use std::iter::IntoIterator;
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct Stack<T, const S: usize> {
data: [T; S],
len: usize // we can experiment with using u8 some other time
}
impl<T, const S: usize> Stack<T, S> {
pub fn push(&mut self, v: T) {
self.data[self.len] = v;
self.len += 1;
}
pub fn len(&self) -> usize {
self.len
}
pub fn clear(&mut self) {
self.len = 0;
}
pub fn last(&self) -> Option<&T> {
if self.len == 0 {
None
}
else {
Some(&self.data[self.len - 1])
}
}
pub fn iter(&self) -> impl Iterator<Item = &T> {
self.data.iter().take(self.len)
}
pub const fn from_array(array: [T; S]) -> Self {
Stack {
data: array,
len: S,
}
}
pub fn into_inner(self) -> [T; S] {
self.data
}
}
impl<T, const S: usize> Stack<T, S>
where T: Copy + Default
{
pub fn new() -> Self {
Stack {
data: [Default::default(); S],
len: 0,
}
}
pub fn move_slice(&mut self, dst: &mut Self, start: usize) {
let slice_len = self.len - start;
let src_slice = &mut self.data[start..self.len];
let dst_slice = &mut dst.data[dst.len..(dst.len + slice_len)];
dst_slice.copy_from_slice(src_slice);
self.len -= slice_len;
dst.len += slice_len;
}
pub fn move_slice_under(&mut self, dst: &mut Self, start: usize) {
let slice_len = self.len - start;
let src_slice = &mut self.data[start..self.len];
dst.data.rotate_right(slice_len);
let dst_slice = &mut dst.data[0..slice_len];
dst_slice.copy_from_slice(src_slice);
self.len -= slice_len;
dst.len += slice_len;
}
// like above, except source and destination are the same, i.e. reordering the stack
pub fn shift_slice_under(&mut self, start: usize) {
for mut i in start..self.len {
while i > 0 {
self.data.swap(i, i -1);
i -= 1;
}
}
}
}
impl<T, const S: usize> Default for Stack<T, S>
where T: Copy + Default
{
fn default() -> Self {
Self::new()
}
}
impl<T, const S: usize> Index<usize> for Stack<T, S> {
type Output = T;
fn index(&self, index: usize) -> &T {
&self.data[index]
}
}
impl<T, const S: usize> Index<RangeFull> for Stack<T, S> {
type Output = [T];
fn index(&self, _index: RangeFull) -> &[T] {
&self.data[..self.len]
}
}
impl<T, const S: usize> IndexMut<RangeFull> for Stack<T, S> {
fn index_mut(&mut self, _index: RangeFull) -> &mut [T] {
&mut self.data[..self.len]
}
}
impl<I, T, const S: usize> From<I> for Stack<T, S>
where
T: Copy + Default,
I: IntoIterator<Item = T>
{
fn from(src: I) -> Self {
let mut res = Self::new();
for (i, item) in src.into_iter().enumerate() {
if i >= S {
break;
}
res.push(item);
}
res
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_basic() {
let mut stack: Stack<usize, 5> = Stack::new();
stack.push(1);
stack.push(2);
stack.push(3);
assert_eq!(stack.len(), 3);
assert_eq!(stack[0], 1);
assert_eq!(stack[1], 2);
assert_eq!(stack[2], 3);
assert_eq!(stack.last(), Some(&3));
stack.clear();
assert_eq!(stack.len(), 0);
}
#[test]
fn test_move_slice() {
let mut a: Stack<usize, 5> = Stack::new();
let mut b: Stack<usize, 5> = Stack::new();
a.push(1);
a.push(2);
a.push(3);
b.push(9);
b.push(8);
a.move_slice(&mut b, 1);
assert_eq!(b[2], 2);
assert_eq!(b[3], 3);
b.move_slice(&mut a, 1);
assert_eq!(a[1], 8);
assert_eq!(a[2], 2);
assert_eq!(a[3], 3);
a.move_slice(&mut b, 0);
assert_eq!(a.len(), 0);
assert_eq!(b[0], 9);
assert_eq!(b.last(), Some(&3));
}
#[test]
fn test_move_slice_under() {
let mut a: Stack<usize, 5> = Stack::new();
let mut b: Stack<usize, 5> = Stack::new();
a.push(1);
a.push(2);
a.push(3);
b.push(9);
b.push(8);
a.move_slice_under(&mut b, 1);
assert_eq!(a.len(), 1);
assert_eq!(a[0], 1);
assert_eq!(b.len(), 4);
assert_eq!(b[0], 2);
assert_eq!(b[3], 8);
b.move_slice_under(&mut a, 0);
assert_eq!(b.len(), 0);
assert_eq!(a[0], 2);
assert_eq!(a[4], 1);
}
fn test_shift_slice_under() {
let mut a: Stack<usize, 5> = Stack::from([1, 2, 3, 4, 5]);
a.shift_slice_under(3);
assert_eq!(a[0], 4);
assert_eq!(a[1], 5);
assert_eq!(a[2], 1);
assert_eq!(a[3], 2);
assert_eq!(a[4], 3);
}
#[test]
fn test_from_iter() {
let s = Stack::<_, 5>::from([1, 2, 3]);
assert_eq!(s[0], 1);
assert_eq!(s[2], 3);
let s = Stack::<_, 2>::from([1, 2, 3]);
assert_eq!(s.len(), 2);
assert_eq!(s[0], 1);
assert_eq!(s[1], 2);
}
#[test]
fn test_iter() {
let s = Stack::<_, 5>::from([1, 2, 3]);
let mut it = s.iter();
assert_eq!(it.next(), Some(&1));
assert_eq!(it.next(), Some(&2));
assert_eq!(it.next(), Some(&3));
assert_eq!(it.next(), None);
}
#[test]
fn test_from_array() {
let s = Stack::from_array([1, 2, 3]);
assert_eq!(s[0], 1);
assert_eq!(s[1], 2);
assert_eq!(s[2], 3);
assert_eq!(s.len(), 3);
}
#[test]
fn test_slice_index() {
let mut s = Stack::<_, 5>::from([3, 4, 5]);
assert_eq!(s[..], [3, 4, 5]);
assert_eq!(&mut s[..], &mut [3, 4, 5]);
}
}

125
test.nim
View File

@ -1,125 +0,0 @@
import math, random, strformat, strutils, times, std/monotimes
import cligen
import fixedseq, game, simulation
type
TestResults = object
scores: ScoreSet
time: Duration
proc ops(tr: TestResults): int =
result = sum(tr.scores)
proc formatNum(n: SomeNumber, decimals = 0): string =
when n is SomeFloat:
let s = $n.round(decimals)
else:
let s = $n
var parts = s.split('.')
result = parts[0].insertSep(',')
if decimals > 0:
result = result & '.' & parts[1]
proc summarize(tr: TestResults, opname = "operations") =
let secs = tr.time.inMilliseconds.float / 1000
stdout.write("Test completed:\n")
stdout.write(&" {tr.ops.formatNum} {opname} in {secs.formatNum(2)} seconds\n")
stdout.write(&" {(tr.ops.float / secs).formatNum} {opname} per second\n")
stdout.flushFile()
proc newRandomGame(): Board =
randomize()
var state: GameState
for i in 0 .. 4:
let pos = rand(1..3)
state.camels.add((c: Color(i), p: pos))
state.camels.shuffle()
result.setState(state)
template executionTime(body: untyped): Duration =
let start = getMonoTime()
body
getMonoTime() - start
# template runTest(loops: Natural, opname = "operations", body: ScoreSet): TestResults =
# var res: TestResults
# for i in 1 .. loops:
# let start = getMonoTime()
# let s = body
# res.time += (getMonoTime() - start)
# res.scores.update(s)
# res.summarize(opname)
# proc games(runs, samples: Natural, parallel = true) =
# let b = newRandomGame()
# runTest(runs, "games"):
# b.randomGames(samples, parallel = parallel)
# proc legs(runs: Natural) =
# let b = newRandomGame()
# runTest(runs, "legs"):
# b.getLegScores
proc games(runs, samples: Natural, parallel = true) =
var res: TestResults
for i in 1 .. runs:
let b = newRandomGame()
let dur = executionTime:
let s = b.randomGames(samples, parallel = parallel)
res.scores.update(s)
res.time += dur
res.summarize("games")
proc legs(runs: Natural) =
var res: TestResults
for i in 1 .. runs:
let b = newRandomGame()
let dur = executionTime:
let s = b.getLegScores
res.scores.update(s)
res.time += dur
res.summarize("legs")
proc spread(runs, samples: Natural) =
let b = newRandomGame()
let spread = randomSpread(b, runs, samples)
stdout.writeLine("Variance:")
for c in Color:
let variance = 100 * (spread.hi[c] - spread.lo[c])
stdout.writeLine(fmt"{c}: {round(variance, 2):.2f}%")
let diff = 100 * (max(spread.hi) - min(spread.lo))
stdout.writeLine(fmt"Win percentage differential: {round(diff, 2):.2f}%")
stdout.flushFile()
const help_runs = "Number of times to run the test"
const help_samples = "Number of iterations per run"
const help_parallel = "Run test in parallel or single-threaded (default parallel)"
proc bench() =
dispatchMulti(
[games, help = {"runs": help_runs, "samples": help_samples, "parallel": help_parallel}],
[legs, help = {"runs": help_runs}],
[spread, help = {"runs": help_runs, "samples": help_samples}]
)
when isMainModule:
bench()

View File

@ -1,3 +0,0 @@
--threads: on
--d: danger
--d: lto

112
ui.nim
View File

@ -1,112 +0,0 @@
import os, math, strutils, strformat
import fixedseq, game, simulation
const help = block:
# can't use regex, fortunately we are looking for a straightforward separator
let readme = slurp("./README.md")
let endPos = rfind(readme, "```") - 1
let startPos = rfind(readme, "```", last = endPos) + 4
readme[startPos..endPos]
# =============================
# User input parsing/validation
# =============================
type
CmdConfig* = object
state*: GameState
interactive*: bool
diceRolled*: array[Color, bool]
proc parseColor(c: char): Color =
case c:
of 'R', 'r':
return cRed
of 'G', 'g':
return cGreen
of 'B', 'b':
return cBlue
of 'Y', 'y':
return cYellow
of 'P', 'p':
return cPurple
else:
raise newException(ValueError, "Invalid camel color specified: " & c)
proc parseArgs*(): CmdConfig =
for p in os.commandLineParams():
if p == "-h":
echo help
quit 0
elif p == "-i":
result.interactive = true
elif result.state.camels.len < 5:
let splat = p.split(':')
let sq = splat[0]
let square = sq.parseInt
let colors = splat[1]
for c in colors:
let color = parseColor(c)
result.state.camels.add((c: color, p: square))
else:
for c in p:
let color = parseColor(c)
result.state.dice[color] = true
if result.state.camels.len != 5:
raise newException(ValueError, "Please specify positions for all camels.")
# ==========================
# Game state representations
# ==========================
proc showSpaces*(b: Board; start, stop: Natural): string =
let numSpaces = stop - start + 1
let width = 4 * numSpaces - 1
var lines: array[7, string]
# start by building up an empty board
for i in 0 .. 6: # gotta initialize the strings
lines[i] = newString(width)
for c in lines[i].mitems:
c = ' '
# fill in the dividers
lines[5] = repeat("=== ", numSpaces - 1)
lines[5].add("===")
# now populate the board
for sp in 0 ..< numSpaces:
# fill in the square numbers
let squareNum = sp + start
let cellMid = 4 * sp + 1
for i, chr in $squareNum:
lines[6][cellMid + i] = chr
# fill in the camel stacks
for i, color in b.squares[squareNum].camels:
let lineNum = 4 - i # lines go to 6, but bottom 2 are reserved
let repr = '|' & color.abbrev & '|'
for j, chr in repr:
lines[lineNum][cellMid - 1 + j] = chr
result = lines.join("\n")
proc showPercents*(scores: ScoreSet): string =
var lines: array[5, string]
for color, pct in scores.percents:
var bar = repeat(" ", 20)
let percentage = round(pct * 100, 2)
# populate the progress bar
let barFill = int(round(pct * 20))
for i in 0 ..< barFill:
bar[i] = '='
lines[int(color)] = fmt"{color:>7}: [{bar}] {percentage:5.2f}%"
result = lines.join("\n")