Compare commits
9 Commits
6f694f99ed
...
fastrand
Author | SHA1 | Date | |
---|---|---|---|
f2e0698608 | |||
cade17a9a6 | |||
94c4240d63 | |||
37991656b9 | |||
20d6022828 | |||
b58aafc61f | |||
57c991cf5f | |||
bd413da9a3 | |||
bcf87a10fd |
22
README.md
Normal file
22
README.md
Normal file
@ -0,0 +1,22 @@
|
||||
# `cup` - CamelUp probability calculator
|
||||
|
||||
This tool calculates probable outcomes for the board game CamelUp.
|
||||
It can calculate all possible outcomes for a single game leg in about 5ms, so effectively instantaneously.
|
||||
Full-game calculations take a little bit longer and are not exact (since it isn't practical to simulate all possible full game states.)
|
||||
However it can easily simulate a million random games in about 80ms in the worst case, which should provide estimates accurate to within about 0.2%.
|
||||
(Numbers from running on a Ryzen 3700X.)
|
||||
|
||||
```
|
||||
Usage:
|
||||
cup [-i] SPACE:STACK [...SPACE:STACK] [DICE]
|
||||
|
||||
SPACE refers to a numbered board space (1-16).
|
||||
STACK refers to a stack of camel colors from bottom to top, e.g.
|
||||
YBR (Yellow, Blue, Red, with Red on top).
|
||||
DICE refers to the set of dice that have already been rolled,
|
||||
e.g. GPR (Green, Purple, Red)
|
||||
|
||||
Options:
|
||||
-i Interactive mode (currently unimplemented)
|
||||
-h Show this message and exit
|
||||
```
|
@ -1,5 +1,5 @@
|
||||
import algorithm, random, sugar
|
||||
import fixedseq, game
|
||||
import fastrand, fixedseq, game
|
||||
|
||||
|
||||
proc nextPermutation(x: var FixedSeq): bool =
|
||||
@ -93,4 +93,4 @@ proc randomFuture*(dice: FixedSeq, r: var Rand): FixedSeq[5, Die, int8] =
|
||||
result.initFixedSeq
|
||||
let order = dice.dup(shuffle(r))
|
||||
for i, color in order:
|
||||
result.add((color, r.rand(1..3)))
|
||||
result.add((color, r.fastRand(1..3)))
|
||||
|
5
config.nims
Normal file
5
config.nims
Normal file
@ -0,0 +1,5 @@
|
||||
--threads: on
|
||||
--d: release
|
||||
--opt: speed
|
||||
--passC: -flto
|
||||
--passL: -flto
|
17
cup.nim
Normal file
17
cup.nim
Normal file
@ -0,0 +1,17 @@
|
||||
import game, simulation, ui
|
||||
|
||||
|
||||
when isMainModule:
|
||||
let config = parseArgs()
|
||||
var b: Board
|
||||
b.init
|
||||
b.setState(config.state, [])
|
||||
b.diceRolled = config.diceRolled
|
||||
echo b.showSpaces(1, 16)
|
||||
let legScores = b.getLegScores
|
||||
echo "\nCurrent leg probabilities:"
|
||||
echo legScores.showPercents()
|
||||
|
||||
let gameScores = b.randomGames(1_000_000)
|
||||
echo "\nFull game probabilities (1M simulations):"
|
||||
echo gameScores.showPercents()
|
74
fastrand.nim
Normal file
74
fastrand.nim
Normal file
@ -0,0 +1,74 @@
|
||||
import random, math
|
||||
import times, std/monotimes, strformat, strutils
|
||||
|
||||
|
||||
proc formatNum(n: SomeNumber): string =
|
||||
let s = $(n.round)
|
||||
let t = s[0 .. s.len - 3]
|
||||
var count = 1
|
||||
for i in countdown(t.high, 0):
|
||||
result.insert($t[i], 0)
|
||||
if count mod 3 == 0 and i != 0:
|
||||
result.insert(",", 0)
|
||||
count += 1
|
||||
|
||||
|
||||
proc formatRate(n: Natural, d: Duration): string =
|
||||
result = formatNum(1_000_000'f64 * n.float64 / d.inMicroseconds.float64)
|
||||
|
||||
|
||||
const upperBound = uint64(uint32.high)
|
||||
|
||||
|
||||
proc fastRand*[T: Natural](r: var Rand, x: T): T =
|
||||
# Nim ranges are usually inclusive, but this algorithm is exclusive
|
||||
let x = x.uint64 + 1
|
||||
let num = if x <= upperBound:
|
||||
((r.next shr 32) * x.uint64) shr 32
|
||||
else:
|
||||
r.next mod x.uint64
|
||||
result = T(num)
|
||||
|
||||
|
||||
proc fastRand*(r: var Rand; x, y: Natural): Natural =
|
||||
let lim = (y - x)
|
||||
result = fastRand(r, lim) + x
|
||||
|
||||
|
||||
proc fastRand*[T](r: var Rand, slice: HSlice[T, T]): T =
|
||||
let n = fastRand(r, slice.a.Natural, slice.b.Natural)
|
||||
result = T(n)
|
||||
|
||||
|
||||
proc testFastRand(num = 1_000_000_000): Duration =
|
||||
var r = initRand(rand(int64))
|
||||
let start = getMonoTime()
|
||||
for i in 1 .. num:
|
||||
discard r.fastRand(5)
|
||||
result = getMonoTime() - start
|
||||
# echo "fastrand execution rate: ", 1000 * num / dur.inMilliseconds.int, " generated per second."
|
||||
|
||||
|
||||
proc testStdRand(num = 1_000_000_000): Duration =
|
||||
var r = initRand(rand(int64))
|
||||
let start = getMonoTime()
|
||||
for i in 1 .. num:
|
||||
discard r.rand(4)
|
||||
result = getMonoTime() - start
|
||||
# echo "std rand execution rate: ", 1000 * num / dur.inMilliseconds.int, " generated per second."
|
||||
|
||||
|
||||
when isMainModule:
|
||||
randomize()
|
||||
var r = initRand(rand(int64))
|
||||
let runs = 100_000_000
|
||||
var totals: array[5..9, int]
|
||||
for i in 1 .. runs:
|
||||
let n = r.fastRand(5..9)
|
||||
totals[n] += 1
|
||||
echo totals
|
||||
|
||||
# let fr = testFastRand(runs)
|
||||
# echo "fastrand execution rate: ", formatNum(1_000_000 * runs / fr.inMicroseconds.int)
|
||||
# let sr = testStdRand(runs)
|
||||
# echo "standard execution rate: ", formatNum(1_000_000 * runs / sr.inMicroseconds.int)
|
18
game.nim
18
game.nim
@ -18,15 +18,21 @@ proc getAllColors: ColorStack =
|
||||
for c in Color.low .. Color.high:
|
||||
result[i] = c
|
||||
|
||||
const allColors* = getAllColors()
|
||||
const colorNames: array[Color, string] =
|
||||
const
|
||||
allColors* = getAllColors()
|
||||
colorNames: array[Color, string] =
|
||||
["Red", "Green", "Blue", "Yellow", "Purple"]
|
||||
colorAbbrevs: array[Color, char] = ['R', 'G', 'B', 'Y', 'P']
|
||||
|
||||
|
||||
proc `$`*(c: Color): string =
|
||||
result = colorNames[c]
|
||||
|
||||
|
||||
proc abbrev*(c: Color): char =
|
||||
result = colorAbbrevs[c]
|
||||
|
||||
|
||||
proc `$`*(s: ColorStack): string =
|
||||
result.add("St@[")
|
||||
for i, color in s:
|
||||
@ -44,8 +50,8 @@ type
|
||||
tForward = 1
|
||||
|
||||
Square* = object
|
||||
camels: ColorStack
|
||||
tile: Option[Tile]
|
||||
camels*: ColorStack
|
||||
tile*: Option[Tile]
|
||||
|
||||
Board* = object
|
||||
squares*: array[1..16, Square]
|
||||
@ -86,9 +92,9 @@ proc display*(b: Board, start, stop: int) =
|
||||
let sq = b.squares[i]
|
||||
let lead = $i & ": "
|
||||
if sq.tile.isSome:
|
||||
echo lead, sq.tile.get
|
||||
stdout.writeLine($lead & $sq.tile.get)
|
||||
else:
|
||||
echo lead, sq.camels
|
||||
stdout.writeLine($lead & $sq.camels)
|
||||
echo ""
|
||||
|
||||
|
||||
|
110
main.nim
110
main.nim
@ -1,110 +0,0 @@
|
||||
import math, options, sequtils, random, sets
|
||||
import combinators, game, fixedseq, ui
|
||||
|
||||
|
||||
type
|
||||
ScoreSet* = array[Color, int]
|
||||
|
||||
ScoreSpread = object
|
||||
lo: array[Color, float]
|
||||
hi: array[Color, float]
|
||||
|
||||
LegResults* = tuple[scores: ScoreSet, endStates: HashSet[Board]]
|
||||
|
||||
|
||||
proc update*(scores: var ScoreSet, toAdd: ScoreSet) =
|
||||
for i, s in toAdd:
|
||||
scores[i] += s
|
||||
|
||||
|
||||
proc display*(scores: ScoreSet) =
|
||||
let total = scores.sum
|
||||
for color, score in scores:
|
||||
echo color, ": ", round(100 * scores[color] / total, 2), '%'
|
||||
|
||||
|
||||
proc projectLeg*(b: Board): LegResults =
|
||||
var scores: ScoreSet
|
||||
var endStates: HashSet[Board]
|
||||
|
||||
var diceRemaining: ColorStack
|
||||
diceRemaining.initFixedSeq
|
||||
for i, c in b.diceRolled:
|
||||
if not c: diceRemaining.add(i)
|
||||
|
||||
for future in possibleFutures(diceRemaining):
|
||||
var prediction = b # make a copy
|
||||
for dieRoll in future:
|
||||
prediction.advance(dieRoll)
|
||||
inc scores[prediction.leader.get]
|
||||
# deduplicate results
|
||||
endStates.incl(prediction)
|
||||
|
||||
result = (scores, endStates)
|
||||
|
||||
|
||||
proc projectOutcomes(b: Board, maxDepth = 1): ScoreSet =
|
||||
var outcomeStack = @[ [b].toHashSet ]
|
||||
for depth in 1..maxDepth:
|
||||
echo "simulating ", outcomeStack[^1].len, " possible legs."
|
||||
var endStates: HashSet[Board]
|
||||
|
||||
for o in outcomeStack[^1]:
|
||||
var o = o # make it mutable
|
||||
if outcomeStack.len > 1:
|
||||
o.resetDice # o was describina an end-of-leg state, so dice were exhausted
|
||||
|
||||
let projection = o.projectLeg
|
||||
result.update(projection[0])
|
||||
endStates.incl(projection[1])
|
||||
stdout.write("simulated: " & $result.sum & "\r")
|
||||
|
||||
outcomeStack.add(endStates)
|
||||
echo "\nDistinct end states: ", outcomeStack.mapIt(it.len).sum
|
||||
|
||||
|
||||
proc randomGame(b: Board, r: var Rand): Color =
|
||||
var projection = b
|
||||
while true:
|
||||
for roll in randomFuture(projection.diceRemaining, r):
|
||||
projection.advance(roll)
|
||||
if projection.gameOver:
|
||||
return projection.leader.get
|
||||
projection.resetDice
|
||||
|
||||
|
||||
proc randomGames(b: Board, count: SomeInteger): ScoreSet =
|
||||
randomize()
|
||||
var r = initRand(rand(int64))
|
||||
for i in 1 .. count:
|
||||
let winner = b.randomGame(r)
|
||||
inc result[winner]
|
||||
# if i mod 100_000 == 0 or i == count - 1:
|
||||
# stdout.write("simulating " & count & "random games: " & $i & "\r")
|
||||
# echo ""
|
||||
|
||||
|
||||
proc randomSpread(b: Board, nTests: SomeInteger, nSamples: SomeInteger): ScoreSpread =
|
||||
for s in result.lo.mitems:
|
||||
s = 1
|
||||
|
||||
for i in 0 ..< nTests:
|
||||
let scores = b.randomGames(nSamples)
|
||||
let total = scores.sum
|
||||
for color, score in scores:
|
||||
let pct = score / total
|
||||
if pct < result.lo[color]:
|
||||
result.lo[color] = pct
|
||||
if pct > result.hi[color]:
|
||||
result.hi[color] = pct
|
||||
|
||||
|
||||
when isMainModule:
|
||||
let config = parseArgs()
|
||||
var b: Board
|
||||
b.init
|
||||
b.setState(config.state, [])
|
||||
b.diceRolled = config.diceRolled
|
||||
b.display(1, 5)
|
||||
let scores = b.projectLeg()[0]
|
||||
scores.display
|
138
simulation.nim
Normal file
138
simulation.nim
Normal file
@ -0,0 +1,138 @@
|
||||
import cpuinfo, math, options, random, tables
|
||||
import combinators, game, fixedseq
|
||||
|
||||
|
||||
type
|
||||
ScoreSet* = array[Color, int]
|
||||
WinPercents* = array[Color, float]
|
||||
|
||||
ScoreSpread = object
|
||||
lo*: array[Color, float]
|
||||
hi*: array[Color, float]
|
||||
|
||||
LegResults* = tuple[scores: ScoreSet, endStates: CountTable[Board]]
|
||||
|
||||
|
||||
proc update*(scores: var ScoreSet, toAdd: ScoreSet) =
|
||||
for i, s in toAdd:
|
||||
scores[i] += s
|
||||
|
||||
|
||||
proc display*(scores: ScoreSet) =
|
||||
let total = scores.sum
|
||||
for color, score in scores:
|
||||
let line = $color & ": " & $round(100 * scores[color] / total, 2) & '%'
|
||||
stdout.writeLine(line)
|
||||
stdout.flushFile()
|
||||
# echo color, ": ", round(100 * scores[color] / total, 2), '%'
|
||||
|
||||
|
||||
proc percents*(scores: ScoreSet): WinPercents =
|
||||
let total = scores.sum
|
||||
for c, score in scores:
|
||||
result[c] = score / total
|
||||
|
||||
|
||||
# ======================
|
||||
# Single-leg simulations
|
||||
# ======================
|
||||
|
||||
iterator legEndStates(b: Board): Board =
|
||||
var diceRemaining: ColorStack
|
||||
diceRemaining.initFixedSeq
|
||||
for i, c in b.diceRolled:
|
||||
if not c: diceRemaining.add(i)
|
||||
|
||||
for future in possibleFutures(diceRemaining):
|
||||
var prediction = b # make a copy so we can mutate
|
||||
for dieRoll in future:
|
||||
prediction.advance(dieRoll)
|
||||
yield prediction
|
||||
|
||||
|
||||
proc getLegScores*(b: Board): ScoreSet =
|
||||
for prediction in b.legEndStates:
|
||||
inc result[prediction.leader.get]
|
||||
|
||||
|
||||
# =====================
|
||||
# Full-game simulations
|
||||
# =====================
|
||||
|
||||
proc randomGame*(b: Board, r: var Rand): Color =
|
||||
var projection = b
|
||||
while true:
|
||||
for roll in randomFuture(projection.diceRemaining, r):
|
||||
projection.advance(roll)
|
||||
if projection.gameOver:
|
||||
return projection.leader.get
|
||||
projection.resetDice()
|
||||
|
||||
|
||||
proc randomGamesWorker(b: Board, count: Natural, r: var Rand): ScoreSet =
|
||||
for i in 1 .. count:
|
||||
let winner = b.randomGame(r)
|
||||
inc result[winner]
|
||||
|
||||
|
||||
# =======================
|
||||
# Multithreading nonsense
|
||||
# =======================
|
||||
|
||||
type WorkerArgs = object
|
||||
board: Board
|
||||
count: Natural
|
||||
seed: int64
|
||||
|
||||
|
||||
# have to do this at the module level so it can be shared
|
||||
var gamesChannel: Channel[ScoreSet]
|
||||
gamesChannel.open()
|
||||
|
||||
|
||||
proc randomGamesThread(args: WorkerArgs) =
|
||||
var r = initRand(args.seed)
|
||||
let scores = randomGamesWorker(args.board, args.count, r)
|
||||
gamesChannel.send(scores)
|
||||
|
||||
|
||||
proc randomGames*(b: Board, count: Natural, parallel = true, numThreads = 0): ScoreSet =
|
||||
randomize()
|
||||
|
||||
if not parallel:
|
||||
var r = initRand(rand(int64))
|
||||
return randomGamesWorker(b, count, r)
|
||||
|
||||
let numThreads =
|
||||
if numThreads == 0:
|
||||
countProcessors()
|
||||
else:
|
||||
numThreads
|
||||
|
||||
var workers = newSeq[Thread[WorkerArgs]](numThreads)
|
||||
for i, w in workers.mpairs:
|
||||
var numGames = int(floor(count / numThreads))
|
||||
if i < (count mod numThreads):
|
||||
numGames += 1
|
||||
let args = WorkerArgs(board: b, count: numGames, seed: rand(int64))
|
||||
|
||||
createThread(w, randomGamesThread, args)
|
||||
|
||||
for i in 1 .. numThreads:
|
||||
let scores = gamesChannel.recv()
|
||||
result.update(scores)
|
||||
|
||||
|
||||
proc randomSpread*(b: Board; nTests, nSamples: Natural): ScoreSpread =
|
||||
for s in result.lo.mitems:
|
||||
s = 1
|
||||
|
||||
for i in 0 ..< nTests:
|
||||
let scores = b.randomGames(nSamples)
|
||||
let total = scores.sum
|
||||
for color, score in scores:
|
||||
let pct = score / total
|
||||
if pct < result.lo[color]:
|
||||
result.lo[color] = pct
|
||||
if pct > result.hi[color]:
|
||||
result.hi[color] = pct
|
97
test.nim
Normal file
97
test.nim
Normal file
@ -0,0 +1,97 @@
|
||||
import math, random, strformat, times, std/monotimes
|
||||
import fixedseq, game, simulation, ui
|
||||
|
||||
|
||||
type
|
||||
TestResults = object
|
||||
ops: int
|
||||
time: Duration
|
||||
|
||||
|
||||
proc summarize(tr: TestResults) =
|
||||
let secs = tr.time.inMilliseconds.float / 1000
|
||||
stdout.write("Test completed:\n")
|
||||
stdout.write(" " & $tr.ops, " operations in " & $round(secs, 2) & " seconds\n")
|
||||
stdout.write(" " & $round(tr.ops.float / secs, 2) & " operations per second")
|
||||
stdout.flushFile()
|
||||
|
||||
|
||||
template executionTime(body: untyped): Duration =
|
||||
let start = getMonoTime()
|
||||
body
|
||||
getMonoTime() - start
|
||||
|
||||
|
||||
proc getRand(): Rand =
|
||||
randomize()
|
||||
result = initRand(rand(int64))
|
||||
|
||||
|
||||
proc randomDice(r: var Rand): seq[tuple[c: Color, p: int]] =
|
||||
for c in Color:
|
||||
let v = r.rand(1..3)
|
||||
result.add((c, v))
|
||||
result.shuffle
|
||||
|
||||
|
||||
proc newRandomGame(r: var Rand): Board =
|
||||
var dice: array[5, tuple[c: Color, p: int]]
|
||||
for i in 0 .. 4:
|
||||
dice[i] = (Color(i), r.rand(1..3))
|
||||
|
||||
result.init
|
||||
result.setState(dice, [])
|
||||
|
||||
|
||||
proc games(nTests, nSamples: SomeInteger, parallel = true): TestResults =
|
||||
var r = getRand()
|
||||
var scores: ScoreSet
|
||||
for i in 1 .. nTests:
|
||||
let b = newRandomGame(r)
|
||||
let dur = executionTime:
|
||||
let s = b.randomGames(nSamples, parallel = parallel)
|
||||
result.ops += s.sum()
|
||||
result.time += dur
|
||||
|
||||
|
||||
proc testLegs(n: Natural = 100): auto =
|
||||
var boards: seq[Board]
|
||||
var r = initRand(rand(int64))
|
||||
for i in 1 .. n:
|
||||
var b: Board
|
||||
b.init
|
||||
let dice = randomDice(r)
|
||||
b.setState(dice, [])
|
||||
boards.add(b)
|
||||
stdout.write("Constructed: " & $i & "\r")
|
||||
echo ""
|
||||
|
||||
echo "Running..."
|
||||
let start = cpuTime()
|
||||
for b in boards:
|
||||
discard b.getLegScores
|
||||
result = cpuTime() - start
|
||||
|
||||
|
||||
proc testSpread(nTests, nSamples: Natural) =
|
||||
var b: Board
|
||||
b.init
|
||||
var r = initRand(rand(int64))
|
||||
let dice = randomDice(r)
|
||||
b.setState(dice, [])
|
||||
b.display(1, 5)
|
||||
let spread = randomSpread(b, nTests, nSamples)
|
||||
|
||||
stdout.writeLine("Variance:")
|
||||
for c in Color:
|
||||
let variance = 100 * (spread.hi[c] - spread.lo[c])
|
||||
stdout.writeLine(fmt"{c}: {round(variance, 2):.2f}%")
|
||||
|
||||
let diff = 100 * (max(spread.hi) - min(spread.lo))
|
||||
stdout.writeLine(fmt"Win percentage differential: {round(diff, 2):.2f}%")
|
||||
|
||||
stdout.flushFile()
|
||||
|
||||
|
||||
when isMainModule:
|
||||
games(10, 10_000_000).summarize()
|
59
ui.nim
59
ui.nim
@ -1,5 +1,5 @@
|
||||
import os, strutils
|
||||
import game
|
||||
import os, math, strutils, strformat
|
||||
import fixedseq, game, simulation
|
||||
|
||||
|
||||
const help =
|
||||
@ -19,6 +19,11 @@ Options:
|
||||
-h Show this message and exit
|
||||
"""
|
||||
|
||||
|
||||
# =============================
|
||||
# User input parsing/validation
|
||||
# =============================
|
||||
|
||||
type
|
||||
CmdConfig* = object
|
||||
state*: seq[tuple[c: Color, p: int]]
|
||||
@ -63,3 +68,53 @@ proc parseArgs*(): CmdConfig =
|
||||
for c in p:
|
||||
let color = parseColor(c)
|
||||
result.diceRolled[color] = true
|
||||
|
||||
|
||||
# ==========================
|
||||
# Game state representations
|
||||
# ==========================
|
||||
|
||||
proc showSpaces*(b: Board; start, stop: Natural): string =
|
||||
let numSpaces = stop - start + 1
|
||||
let width = 4 * numSpaces - 1
|
||||
var lines: array[7, string]
|
||||
# start by building up an empty board
|
||||
for i in 0 .. 6: # gotta initialize the strings
|
||||
lines[i] = newString(width)
|
||||
for c in lines[i].mitems:
|
||||
c = ' '
|
||||
# fill in the dividers
|
||||
lines[5] = repeat("=== ", numSpaces - 1)
|
||||
lines[5].add("===")
|
||||
|
||||
# now populate the board
|
||||
for sp in 0 ..< numSpaces:
|
||||
# fill in the square numbers
|
||||
let squareNum = sp + start
|
||||
let cellMid = 4 * sp + 1
|
||||
for i, chr in $squareNum:
|
||||
lines[6][cellMid + i] = chr
|
||||
|
||||
# fill in the camel stacks
|
||||
for i, color in b.squares[squareNum].camels:
|
||||
let lineNum = 4 - i # lines go to 6, but bottom 2 are reserved
|
||||
let repr = '|' & color.abbrev & '|'
|
||||
for j, chr in repr:
|
||||
lines[lineNum][cellMid - 1 + j] = chr
|
||||
|
||||
result = lines.join("\n")
|
||||
|
||||
|
||||
proc showPercents*(scores: ScoreSet): string =
|
||||
var lines: array[5, string]
|
||||
for color, pct in scores.percents:
|
||||
let label = align($color, 7) # e.g. " Green"
|
||||
var bar = repeat(" ", 20)
|
||||
let percentage = round(pct * 100, 2)
|
||||
# populate the progress bar
|
||||
let barFill = int(round(pct * 100 / 20))
|
||||
for i in 0 ..< barFill:
|
||||
bar[i] = '='
|
||||
|
||||
lines[int(color)] = fmt"{label}: [{bar}] {percentage}%"
|
||||
result = lines.join("\n")
|
||||
|
Reference in New Issue
Block a user