import math, hashes, options, tables, sequtils, sets, sugar import combinators type Color = enum cRed, cGreen, cBlue, cYellow, cPurple Tile = enum tBackward = -1, tForward = 1 Square = object camels: seq[Color] tile: Option[Tile] Die = tuple[color: Color, value: int] ScoreSet = array[Color, int] LegResults = tuple[scores: ScoreSet, endStates: HashSet[Board]] Board = object squares: array[1..16, Square] camels: array[Color, range[1..16]] diceRolled: array[Color, bool] leader: Option[Color] gameOver: bool const allDice = @[cRed, cGreen, cBlue, cYellow, cPurple] proc update(scores: var ScoreSet, toAdd: ScoreSet) = for i, s in toAdd: scores[i] += s proc `[]`[T](b: var Board, idx: T): var Square = b.squares[idx] proc hash(b: Board): Hash = var h: Hash = 0 # there could be a tile anywhere so we have to check all squares for i, sq in b.squares: if sq.camels.len > 0 or sq.tile.isSome: h = h !& i if sq.tile.isSome: h = h !& int(sq.tile.get) * 10 # so it isn't confused with a camel else: for c in sq.camels: h = h !& int(c) result = !$h proc display(b: Board, start, stop: int) = for i in start..stop: let sq = b.squares[i] let lead = $i & ": " if sq.tile.isSome: echo lead, sq.tile.get else: echo lead, sq.camels echo "" proc setState(b: var Board; camels: openArray[tuple[c: Color, p: int]]; tiles: openArray[tuple[t: Tile, p: int]]) = for (color, dest) in camels: # note that `camels` is ordered, as this determines stacking b[dest].camels.add(color) b.camels[color] = dest for (tile, dest) in tiles: b[dest].tile = some(tile) let leadCamel = b[max(b.camels)].camels[^1] # top camel in the last currently-occupied space b.leader = some(leadCamel) proc advance(b: var Board, die: Die) = let (color, roll) = die startPos = b.camels[color] var endPos = startPos + roll if endPos > 16: # camel has passed the finish line b.leader = some(b[startPos].camels[^1]) b.gameOver = true return var prepend = false if b[endPos].tile.isSome: # adjust position (and possibly stacking) to account for tile let t = b[endPos].tile.get endPos += int(t) if t == tBackward: prepend = true for i, c in b[startPos].camels: if c == color: let subStack = b[startPos].camels[i .. ^1] if prepend: b[endPos].camels.insert(subStack) else: b[endPos].camels.add(subStack) b[startPos].camels[i .. ^1] = @[] for moved in subStack: b.camels[moved] = endPos # if we are stacking on or moving past the previous leader if endPos >= b.camels[b.leader.get]: b.leader = some(b[endPos].camels[^1]) break # breaking the outer loop here, not the inner - but only conditionally! gah! b.diceRolled[color] = true proc projectLeg(b: Board): LegResults = var scores: ScoreSet var endStates: HashSet[Board] let diceRemaining = collect(newSeq): for i, c in b.diceRolled: if not c: i for future in possibleFutures(diceRemaining): var prediction = b # make a copy for dieRoll in future: prediction.advance(dieRoll) inc scores[prediction.leader.get] # deduplicate results endStates.incl(prediction) result = (scores, endStates) proc projectOutcomes(b: Board, maxDepth = 1): ScoreSet = var outcomeStack = @[ [b].toHashSet ] for depth in 1..maxDepth: var endStates: HashSet[Board] for o in outcomeStack[^1]: let projection = o.projectLeg result.update(projection[0]) endStates.incl(projection[1]) stdout.write("simulated: " & $result.sum & "\r") outcomeStack.add(endStates) echo "\nDistinct end states: ", outcomeStack.mapIt(it.len).sum var b: Board b.display(1, 5) b.setState({cGreen: 4, cYellow: 3, cPurple: 4, cBlue: 3, cRed: 4}, @[]) b.display(1, 5) let r = b.projectOutcomes(2) let total = r.sum for i, c in r: echo Color(i), ": ", (100 * c / total).round(2), "% (", c, " / ", total, ")"