Compare commits
1 Commits
Author | SHA1 | Date | |
---|---|---|---|
8abe9fdd63 |
@ -1,5 +1,5 @@
|
|||||||
import algorithm, random, sugar
|
import algorithm, random, sugar
|
||||||
import fastrand, fixedseq, game
|
import fixedseq, game
|
||||||
|
|
||||||
|
|
||||||
proc nextPermutation(x: var FixedSeq): bool =
|
proc nextPermutation(x: var FixedSeq): bool =
|
||||||
@ -93,4 +93,4 @@ proc randomFuture*(dice: FixedSeq, r: var Rand): FixedSeq[5, Die, int8] =
|
|||||||
result.initFixedSeq
|
result.initFixedSeq
|
||||||
let order = dice.dup(shuffle(r))
|
let order = dice.dup(shuffle(r))
|
||||||
for i, color in order:
|
for i, color in order:
|
||||||
result.add((color, r.fastRand(1..3)))
|
result.add((color, r.rand(1..3)))
|
||||||
|
74
fastrand.nim
74
fastrand.nim
@ -1,74 +0,0 @@
|
|||||||
import random, math
|
|
||||||
import times, std/monotimes, strformat, strutils
|
|
||||||
|
|
||||||
|
|
||||||
proc formatNum(n: SomeNumber): string =
|
|
||||||
let s = $(n.round)
|
|
||||||
let t = s[0 .. s.len - 3]
|
|
||||||
var count = 1
|
|
||||||
for i in countdown(t.high, 0):
|
|
||||||
result.insert($t[i], 0)
|
|
||||||
if count mod 3 == 0 and i != 0:
|
|
||||||
result.insert(",", 0)
|
|
||||||
count += 1
|
|
||||||
|
|
||||||
|
|
||||||
proc formatRate(n: Natural, d: Duration): string =
|
|
||||||
result = formatNum(1_000_000'f64 * n.float64 / d.inMicroseconds.float64)
|
|
||||||
|
|
||||||
|
|
||||||
const upperBound = uint64(uint32.high)
|
|
||||||
|
|
||||||
|
|
||||||
proc fastRand*[T: Natural](r: var Rand, x: T): T =
|
|
||||||
# Nim ranges are usually inclusive, but this algorithm is exclusive
|
|
||||||
let x = x.uint64 + 1
|
|
||||||
let num = if x <= upperBound:
|
|
||||||
((r.next shr 32) * x.uint64) shr 32
|
|
||||||
else:
|
|
||||||
r.next mod x.uint64
|
|
||||||
result = T(num)
|
|
||||||
|
|
||||||
|
|
||||||
proc fastRand*(r: var Rand; x, y: Natural): Natural =
|
|
||||||
let lim = (y - x)
|
|
||||||
result = fastRand(r, lim) + x
|
|
||||||
|
|
||||||
|
|
||||||
proc fastRand*[T](r: var Rand, slice: HSlice[T, T]): T =
|
|
||||||
let n = fastRand(r, slice.a.Natural, slice.b.Natural)
|
|
||||||
result = T(n)
|
|
||||||
|
|
||||||
|
|
||||||
proc testFastRand(num = 1_000_000_000): Duration =
|
|
||||||
var r = initRand(rand(int64))
|
|
||||||
let start = getMonoTime()
|
|
||||||
for i in 1 .. num:
|
|
||||||
discard r.fastRand(5)
|
|
||||||
result = getMonoTime() - start
|
|
||||||
# echo "fastrand execution rate: ", 1000 * num / dur.inMilliseconds.int, " generated per second."
|
|
||||||
|
|
||||||
|
|
||||||
proc testStdRand(num = 1_000_000_000): Duration =
|
|
||||||
var r = initRand(rand(int64))
|
|
||||||
let start = getMonoTime()
|
|
||||||
for i in 1 .. num:
|
|
||||||
discard r.rand(4)
|
|
||||||
result = getMonoTime() - start
|
|
||||||
# echo "std rand execution rate: ", 1000 * num / dur.inMilliseconds.int, " generated per second."
|
|
||||||
|
|
||||||
|
|
||||||
when isMainModule:
|
|
||||||
randomize()
|
|
||||||
var r = initRand(rand(int64))
|
|
||||||
let runs = 100_000_000
|
|
||||||
var totals: array[5..9, int]
|
|
||||||
for i in 1 .. runs:
|
|
||||||
let n = r.fastRand(5..9)
|
|
||||||
totals[n] += 1
|
|
||||||
echo totals
|
|
||||||
|
|
||||||
# let fr = testFastRand(runs)
|
|
||||||
# echo "fastrand execution rate: ", formatNum(1_000_000 * runs / fr.inMicroseconds.int)
|
|
||||||
# let sr = testStdRand(runs)
|
|
||||||
# echo "standard execution rate: ", formatNum(1_000_000 * runs / sr.inMicroseconds.int)
|
|
26
game.nim
26
game.nim
@ -53,9 +53,13 @@ type
|
|||||||
camels*: ColorStack
|
camels*: ColorStack
|
||||||
tile*: Option[Tile]
|
tile*: Option[Tile]
|
||||||
|
|
||||||
|
CamelPos* = object
|
||||||
|
square*: range[1..16]
|
||||||
|
stackIdx*: int8
|
||||||
|
|
||||||
Board* = object
|
Board* = object
|
||||||
squares*: array[1..16, Square]
|
squares*: array[1..16, Square]
|
||||||
camels*: array[Color, range[1..16]]
|
camels*: array[Color, CamelPos]
|
||||||
diceRolled*: array[Color, bool]
|
diceRolled*: array[Color, bool]
|
||||||
leader*: Option[Color]
|
leader*: Option[Color]
|
||||||
gameOver*: bool
|
gameOver*: bool
|
||||||
@ -103,13 +107,17 @@ proc setState*(b: var Board;
|
|||||||
tiles: openArray[tuple[t: Tile, p: int]]) =
|
tiles: openArray[tuple[t: Tile, p: int]]) =
|
||||||
for (color, dest) in camels: # note that `camels` is ordered, as this determines stacking
|
for (color, dest) in camels: # note that `camels` is ordered, as this determines stacking
|
||||||
b[dest].camels.add(color)
|
b[dest].camels.add(color)
|
||||||
b.camels[color] = dest
|
let height = b[dest].camels.high
|
||||||
|
b.camels[color] = CamelPos(square: dest, stackIdx: height)
|
||||||
|
|
||||||
for (tile, dest) in tiles:
|
for (tile, dest) in tiles:
|
||||||
b[dest].tile = some(tile)
|
b[dest].tile = some(tile)
|
||||||
|
|
||||||
let leadCamel = b[max(b.camels)].camels[^1] # top camel in the last currently-occupied space
|
for sq in b.squares:
|
||||||
b.leader = some(leadCamel)
|
if sq.camels.len > 0:
|
||||||
|
let squareLeader = sq.camels[^1]
|
||||||
|
if b.leader.isNone or b.leader.get != squareLeader:
|
||||||
|
b.leader = some(squareLeader)
|
||||||
|
|
||||||
|
|
||||||
proc diceRemaining*(b: Board): ColorStack =
|
proc diceRemaining*(b: Board): ColorStack =
|
||||||
@ -126,7 +134,7 @@ proc resetDice*(b: var Board) =
|
|||||||
proc advance*(b: var Board, die: Die) =
|
proc advance*(b: var Board, die: Die) =
|
||||||
let
|
let
|
||||||
(color, roll) = die
|
(color, roll) = die
|
||||||
startPos = b.camels[color]
|
startPos = b.camels[color].square
|
||||||
var endPos = startPos + roll
|
var endPos = startPos + roll
|
||||||
|
|
||||||
if endPos > 16: # camel has passed the finish line
|
if endPos > 16: # camel has passed the finish line
|
||||||
@ -144,18 +152,18 @@ proc advance*(b: var Board, die: Die) =
|
|||||||
if prepend:
|
if prepend:
|
||||||
b[startPos].camels.moveSubstackPre(b[endPos].camels, stackStart)
|
b[startPos].camels.moveSubstackPre(b[endPos].camels, stackStart)
|
||||||
let stackLen = b[startPos].camels.len - stackStart
|
let stackLen = b[startPos].camels.len - stackStart
|
||||||
for i in 0 ..< stackLen:
|
for i in 0'i8 ..< stackLen:
|
||||||
# we know how many camels we added to the bottom, so set the position for each of those
|
# we know how many camels we added to the bottom, so set the position for each of those
|
||||||
b.camels[b[endPos].camels[i]] = endPos
|
b.camels[b[endPos].camels[i]] = CamelPos(square: endPos, stackIdx: i) # replace with cast later?
|
||||||
else:
|
else:
|
||||||
let dstPrevHigh = b[endPos].camels.high
|
let dstPrevHigh = b[endPos].camels.high
|
||||||
b[startPos].camels.moveSubstack(b[endPos].camels, stackStart)
|
b[startPos].camels.moveSubstack(b[endPos].camels, stackStart)
|
||||||
# the camels that have moved start immediately after the previous high camel
|
# the camels that have moved start immediately after the previous high camel
|
||||||
for i in (dstPrevHigh + 1) .. b[endPos].camels.high:
|
for i in (dstPrevHigh + 1) .. b[endPos].camels.high:
|
||||||
b.camels[b[endPos].camels[i]] = endPos
|
b.camels[b[endPos].camels[i]] = CamelPos(square: endPos, stackIdx: i)
|
||||||
|
|
||||||
# if we are stacking on or moving past the previous leader
|
# if we are stacking on or moving past the previous leader
|
||||||
if endPos >= b.camels[b.leader.get]:
|
if endPos >= b.camels[b.leader.get].square:
|
||||||
b.leader = some(b[endPos].camels[^1])
|
b.leader = some(b[endPos].camels[^1])
|
||||||
|
|
||||||
b.diceRolled[color] = true
|
b.diceRolled[color] = true
|
Reference in New Issue
Block a user