cup/main.nim

159 lines
4.0 KiB
Nim

import math, hashes, options, tables, sequtils, sets, sugar
import combinators
type
Color = enum
cRed, cGreen, cBlue, cYellow, cPurple
Tile = enum
tBackward = -1,
tForward = 1
Square = object
camels: seq[Color]
tile: Option[Tile]
Die = tuple[color: Color, value: int]
ScoreSet = array[Color, int]
LegResults = tuple[scores: ScoreSet, endStates: HashSet[Board]]
Board = object
squares: array[1..16, Square]
camels: array[Color, range[1..16]]
diceRolled: array[Color, bool]
leader: Option[Color]
gameOver: bool
const allDice = @[cRed, cGreen, cBlue, cYellow, cPurple]
proc update(scores: var ScoreSet, toAdd: ScoreSet) =
for i, s in toAdd:
scores[i] += s
proc `[]`[T](b: var Board, idx: T): var Square =
b.squares[idx]
proc hash(b: Board): Hash =
var h: Hash = 0
# there could be a tile anywhere so we have to check all squares
for i, sq in b.squares:
if sq.camels.len > 0 or sq.tile.isSome:
h = h !& i
if sq.tile.isSome:
h = h !& int(sq.tile.get) * 10 # so it isn't confused with a camel
else:
for c in sq.camels:
h = h !& int(c)
result = !$h
proc display(b: Board, start, stop: int) =
for i in start..stop:
let sq = b.squares[i]
let lead = $i & ": "
if sq.tile.isSome:
echo lead, sq.tile.get
else:
echo lead, sq.camels
echo ""
proc setState(b: var Board;
camels: openArray[tuple[c: Color, p: int]];
tiles: openArray[tuple[t: Tile, p: int]]) =
for (color, dest) in camels: # note that `camels` is ordered, as this determines stacking
b[dest].camels.add(color)
b.camels[color] = dest
for (tile, dest) in tiles:
b[dest].tile = some(tile)
let leadCamel = b[max(b.camels)].camels[^1] # top camel in the last currently-occupied space
b.leader = some(leadCamel)
proc advance(b: var Board, die: Die) =
let
(color, roll) = die
startPos = b.camels[color]
var endPos = startPos + roll
if endPos > 16: # camel has passed the finish line
b.leader = some(b[startPos].camels[^1])
b.gameOver = true
return
var prepend = false
if b[endPos].tile.isSome: # adjust position (and possibly stacking) to account for tile
let t = b[endPos].tile.get
endPos += int(t)
if t == tBackward: prepend = true
for i, c in b[startPos].camels:
if c == color:
let subStack = b[startPos].camels[i .. ^1]
if prepend:
b[endPos].camels.insert(subStack)
else:
b[endPos].camels.add(subStack)
b[startPos].camels[i .. ^1] = @[]
for moved in subStack:
b.camels[moved] = endPos
# if we are stacking on or moving past the previous leader
if endPos >= b.camels[b.leader.get]:
b.leader = some(b[endPos].camels[^1])
break # breaking the outer loop here, not the inner - but only conditionally! gah!
b.diceRolled[color] = true
proc projectLeg(b: Board): LegResults =
var scores: ScoreSet
var endStates: HashSet[Board]
let diceRemaining = collect(newSeq):
for i, c in b.diceRolled:
if not c: i
for future in possibleFutures(diceRemaining):
var prediction = b # make a copy
for dieRoll in future:
prediction.advance(dieRoll)
inc scores[prediction.leader.get]
# deduplicate results
endStates.incl(prediction)
result = (scores, endStates)
proc projectOutcomes(b: Board, maxDepth = 1): ScoreSet =
var outcomeStack = @[ [b].toHashSet ]
for depth in 1..maxDepth:
var endStates: HashSet[Board]
for o in outcomeStack[^1]:
let projection = o.projectLeg
result.update(projection[0])
endStates.incl(projection[1])
stdout.write("simulated: " & $result.sum & "\r")
outcomeStack.add(endStates)
echo "\nDistinct end states: ", outcomeStack.mapIt(it.len).sum
var b: Board
b.display(1, 5)
b.setState({cGreen: 4, cYellow: 3, cPurple: 4, cBlue: 3, cRed: 4}, @[])
b.display(1, 5)
let r = b.projectOutcomes(2)
let total = r.sum
for i, c in r:
echo Color(i), ": ", (100 * c / total).round(2), "% (", c, " / ", total, ")"