Compare commits
3 Commits
20d6022828
...
camelpos
Author | SHA1 | Date | |
---|---|---|---|
8abe9fdd63 | |||
94c4240d63 | |||
37991656b9 |
@ -4,6 +4,7 @@ This tool calculates probable outcomes for the board game CamelUp.
|
|||||||
It can calculate all possible outcomes for a single game leg in about 5ms, so effectively instantaneously.
|
It can calculate all possible outcomes for a single game leg in about 5ms, so effectively instantaneously.
|
||||||
Full-game calculations take a little bit longer and are not exact (since it isn't practical to simulate all possible full game states.)
|
Full-game calculations take a little bit longer and are not exact (since it isn't practical to simulate all possible full game states.)
|
||||||
However it can easily simulate a million random games in about 80ms in the worst case, which should provide estimates accurate to within about 0.2%.
|
However it can easily simulate a million random games in about 80ms in the worst case, which should provide estimates accurate to within about 0.2%.
|
||||||
|
(Numbers from running on a Ryzen 3700X.)
|
||||||
|
|
||||||
```
|
```
|
||||||
Usage:
|
Usage:
|
||||||
|
5
config.nims
Normal file
5
config.nims
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
--threads: on
|
||||||
|
--d: release
|
||||||
|
--opt: speed
|
||||||
|
--passC: -flto
|
||||||
|
--passL: -flto
|
11
cup.nim
11
cup.nim
@ -1,5 +1,4 @@
|
|||||||
import math, options, sequtils, random, sets
|
import game, simulation, ui
|
||||||
import combinators, game, fixedseq, simulation, ui
|
|
||||||
|
|
||||||
|
|
||||||
when isMainModule:
|
when isMainModule:
|
||||||
@ -8,11 +7,11 @@ when isMainModule:
|
|||||||
b.init
|
b.init
|
||||||
b.setState(config.state, [])
|
b.setState(config.state, [])
|
||||||
b.diceRolled = config.diceRolled
|
b.diceRolled = config.diceRolled
|
||||||
b.display(1, 5)
|
echo b.showSpaces(1, 16)
|
||||||
let legScores = b.getLegScores
|
let legScores = b.getLegScores
|
||||||
echo "Current leg probabilities:"
|
echo "\nCurrent leg probabilities:"
|
||||||
legScores.display
|
echo legScores.showPercents()
|
||||||
|
|
||||||
let gameScores = b.randomGames(1_000_000)
|
let gameScores = b.randomGames(1_000_000)
|
||||||
echo "\nFull game probabilities (1M simulations):"
|
echo "\nFull game probabilities (1M simulations):"
|
||||||
gameScores.display
|
echo gameScores.showPercents()
|
||||||
|
26
game.nim
26
game.nim
@ -53,9 +53,13 @@ type
|
|||||||
camels*: ColorStack
|
camels*: ColorStack
|
||||||
tile*: Option[Tile]
|
tile*: Option[Tile]
|
||||||
|
|
||||||
|
CamelPos* = object
|
||||||
|
square*: range[1..16]
|
||||||
|
stackIdx*: int8
|
||||||
|
|
||||||
Board* = object
|
Board* = object
|
||||||
squares*: array[1..16, Square]
|
squares*: array[1..16, Square]
|
||||||
camels*: array[Color, range[1..16]]
|
camels*: array[Color, CamelPos]
|
||||||
diceRolled*: array[Color, bool]
|
diceRolled*: array[Color, bool]
|
||||||
leader*: Option[Color]
|
leader*: Option[Color]
|
||||||
gameOver*: bool
|
gameOver*: bool
|
||||||
@ -103,13 +107,17 @@ proc setState*(b: var Board;
|
|||||||
tiles: openArray[tuple[t: Tile, p: int]]) =
|
tiles: openArray[tuple[t: Tile, p: int]]) =
|
||||||
for (color, dest) in camels: # note that `camels` is ordered, as this determines stacking
|
for (color, dest) in camels: # note that `camels` is ordered, as this determines stacking
|
||||||
b[dest].camels.add(color)
|
b[dest].camels.add(color)
|
||||||
b.camels[color] = dest
|
let height = b[dest].camels.high
|
||||||
|
b.camels[color] = CamelPos(square: dest, stackIdx: height)
|
||||||
|
|
||||||
for (tile, dest) in tiles:
|
for (tile, dest) in tiles:
|
||||||
b[dest].tile = some(tile)
|
b[dest].tile = some(tile)
|
||||||
|
|
||||||
let leadCamel = b[max(b.camels)].camels[^1] # top camel in the last currently-occupied space
|
for sq in b.squares:
|
||||||
b.leader = some(leadCamel)
|
if sq.camels.len > 0:
|
||||||
|
let squareLeader = sq.camels[^1]
|
||||||
|
if b.leader.isNone or b.leader.get != squareLeader:
|
||||||
|
b.leader = some(squareLeader)
|
||||||
|
|
||||||
|
|
||||||
proc diceRemaining*(b: Board): ColorStack =
|
proc diceRemaining*(b: Board): ColorStack =
|
||||||
@ -126,7 +134,7 @@ proc resetDice*(b: var Board) =
|
|||||||
proc advance*(b: var Board, die: Die) =
|
proc advance*(b: var Board, die: Die) =
|
||||||
let
|
let
|
||||||
(color, roll) = die
|
(color, roll) = die
|
||||||
startPos = b.camels[color]
|
startPos = b.camels[color].square
|
||||||
var endPos = startPos + roll
|
var endPos = startPos + roll
|
||||||
|
|
||||||
if endPos > 16: # camel has passed the finish line
|
if endPos > 16: # camel has passed the finish line
|
||||||
@ -144,18 +152,18 @@ proc advance*(b: var Board, die: Die) =
|
|||||||
if prepend:
|
if prepend:
|
||||||
b[startPos].camels.moveSubstackPre(b[endPos].camels, stackStart)
|
b[startPos].camels.moveSubstackPre(b[endPos].camels, stackStart)
|
||||||
let stackLen = b[startPos].camels.len - stackStart
|
let stackLen = b[startPos].camels.len - stackStart
|
||||||
for i in 0 ..< stackLen:
|
for i in 0'i8 ..< stackLen:
|
||||||
# we know how many camels we added to the bottom, so set the position for each of those
|
# we know how many camels we added to the bottom, so set the position for each of those
|
||||||
b.camels[b[endPos].camels[i]] = endPos
|
b.camels[b[endPos].camels[i]] = CamelPos(square: endPos, stackIdx: i) # replace with cast later?
|
||||||
else:
|
else:
|
||||||
let dstPrevHigh = b[endPos].camels.high
|
let dstPrevHigh = b[endPos].camels.high
|
||||||
b[startPos].camels.moveSubstack(b[endPos].camels, stackStart)
|
b[startPos].camels.moveSubstack(b[endPos].camels, stackStart)
|
||||||
# the camels that have moved start immediately after the previous high camel
|
# the camels that have moved start immediately after the previous high camel
|
||||||
for i in (dstPrevHigh + 1) .. b[endPos].camels.high:
|
for i in (dstPrevHigh + 1) .. b[endPos].camels.high:
|
||||||
b.camels[b[endPos].camels[i]] = endPos
|
b.camels[b[endPos].camels[i]] = CamelPos(square: endPos, stackIdx: i)
|
||||||
|
|
||||||
# if we are stacking on or moving past the previous leader
|
# if we are stacking on or moving past the previous leader
|
||||||
if endPos >= b.camels[b.leader.get]:
|
if endPos >= b.camels[b.leader.get].square:
|
||||||
b.leader = some(b[endPos].camels[^1])
|
b.leader = some(b[endPos].camels[^1])
|
||||||
|
|
||||||
b.diceRolled[color] = true
|
b.diceRolled[color] = true
|
70
test.nim
70
test.nim
@ -1,7 +1,32 @@
|
|||||||
import math, random, strformat, times
|
import math, random, strformat, times, std/monotimes
|
||||||
import fixedseq, game, simulation, ui
|
import fixedseq, game, simulation, ui
|
||||||
|
|
||||||
|
|
||||||
|
type
|
||||||
|
TestResults = object
|
||||||
|
ops: int
|
||||||
|
time: Duration
|
||||||
|
|
||||||
|
|
||||||
|
proc summarize(tr: TestResults) =
|
||||||
|
let secs = tr.time.inMilliseconds.float / 1000
|
||||||
|
stdout.write("Test completed:\n")
|
||||||
|
stdout.write(" " & $tr.ops, " operations in " & $round(secs, 2) & " seconds\n")
|
||||||
|
stdout.write(" " & $round(tr.ops.float / secs, 2) & " operations per second")
|
||||||
|
stdout.flushFile()
|
||||||
|
|
||||||
|
|
||||||
|
template executionTime(body: untyped): Duration =
|
||||||
|
let start = getMonoTime()
|
||||||
|
body
|
||||||
|
getMonoTime() - start
|
||||||
|
|
||||||
|
|
||||||
|
proc getRand(): Rand =
|
||||||
|
randomize()
|
||||||
|
result = initRand(rand(int64))
|
||||||
|
|
||||||
|
|
||||||
proc randomDice(r: var Rand): seq[tuple[c: Color, p: int]] =
|
proc randomDice(r: var Rand): seq[tuple[c: Color, p: int]] =
|
||||||
for c in Color:
|
for c in Color:
|
||||||
let v = r.rand(1..3)
|
let v = r.rand(1..3)
|
||||||
@ -18,18 +43,15 @@ proc newRandomGame(r: var Rand): Board =
|
|||||||
result.setState(dice, [])
|
result.setState(dice, [])
|
||||||
|
|
||||||
|
|
||||||
proc testGames(n: SomeInteger = 100): auto =
|
proc games(nTests, nSamples: SomeInteger, parallel = true): TestResults =
|
||||||
var r = initRand(rand(int64))
|
var r = getRand()
|
||||||
let dice = randomDice(r)
|
var scores: ScoreSet
|
||||||
var b: Board
|
for i in 1 .. nTests:
|
||||||
b.init
|
let b = newRandomGame(r)
|
||||||
b.setState(dice, [])
|
let dur = executionTime:
|
||||||
b.display(1, 5)
|
let s = b.randomGames(nSamples, parallel = parallel)
|
||||||
|
result.ops += s.sum()
|
||||||
let startTime = cpuTime()
|
result.time += dur
|
||||||
let scores = b.randomGames(n)
|
|
||||||
result = cpuTime() - startTime
|
|
||||||
scores.display()
|
|
||||||
|
|
||||||
|
|
||||||
proc testLegs(n: Natural = 100): auto =
|
proc testLegs(n: Natural = 100): auto =
|
||||||
@ -72,24 +94,4 @@ proc testSpread(nTests, nSamples: Natural) =
|
|||||||
|
|
||||||
|
|
||||||
when isMainModule:
|
when isMainModule:
|
||||||
randomize()
|
games(10, 10_000_000).summarize()
|
||||||
var r = initRand(rand(int64))
|
|
||||||
let b = newRandomGame(r)
|
|
||||||
b.display(1, 5)
|
|
||||||
echo b.showSpaces(1, 16)
|
|
||||||
|
|
||||||
let scores = b.getLegScores
|
|
||||||
echo scores.showPercents
|
|
||||||
# let start_states = 2_000
|
|
||||||
# let executionTime = testLegs(start_states)
|
|
||||||
# echo "Execution time: ", executionTime
|
|
||||||
# echo "Leg simulations per second: ", float(start_states * 29_160) / executionTime
|
|
||||||
|
|
||||||
# for i in 1 .. 1:
|
|
||||||
# let num_games = 100_000_005
|
|
||||||
# let executionTime = testGames(num_games)
|
|
||||||
# echo "Execution time: ", executionTime
|
|
||||||
# echo "Full-game simulations per second: ", float(num_games) / executionTime
|
|
||||||
# echo ""
|
|
||||||
|
|
||||||
# testSpread(100, 1_000_000)
|
|
||||||
|
Reference in New Issue
Block a user