Compare commits

..

2 Commits

Author SHA1 Message Date
Joseph Montanaro
373807b4bc switch to bitshifting operations (turns out to be slower, oh well) 2021-07-19 10:45:29 -07:00
a52e8669de add bitshifting version of substack move 2021-07-18 22:07:14 -07:00
17 changed files with 983 additions and 796 deletions

4
.gitignore vendored
View File

@ -1,2 +1,2 @@
/target
*.etl*
*.exe
profile_results.txt

90
Cargo.lock generated
View File

@ -1,90 +0,0 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3
[[package]]
name = "cfg-if"
version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"
[[package]]
name = "cup"
version = "0.1.0"
dependencies = [
"enum-map",
"fastrand",
]
[[package]]
name = "enum-map"
version = "2.4.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "50c25992259941eb7e57b936157961b217a4fc8597829ddef0596d6c3cd86e1a"
dependencies = [
"enum-map-derive",
]
[[package]]
name = "enum-map-derive"
version = "0.11.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2a4da76b3b6116d758c7ba93f7ec6a35d2e2cf24feda76c6e38a375f4d5c59f2"
dependencies = [
"proc-macro2",
"quote",
"syn",
]
[[package]]
name = "fastrand"
version = "1.8.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a7a407cfaa3385c4ae6b23e84623d48c2798d06e3e6a1878f7f59f17b3f86499"
dependencies = [
"instant",
]
[[package]]
name = "instant"
version = "0.1.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7a5bbe824c507c5da5956355e86a746d82e0e1464f65d862cc5e71da70e94b2c"
dependencies = [
"cfg-if",
]
[[package]]
name = "proc-macro2"
version = "1.0.49"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "57a8eca9f9c4ffde41714334dee777596264c7825420f521abc92b5b5deb63a5"
dependencies = [
"unicode-ident",
]
[[package]]
name = "quote"
version = "1.0.23"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8856d8364d252a14d474036ea1358d63c9e6965c8e5c1885c18f73d70bff9c7b"
dependencies = [
"proc-macro2",
]
[[package]]
name = "syn"
version = "1.0.107"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1f4064b5b16e03ae50984a5a8ed5d4f8803e6bc1fd170a3cda91a1be4b18e3f5"
dependencies = [
"proc-macro2",
"quote",
"unicode-ident",
]
[[package]]
name = "unicode-ident"
version = "1.0.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "84a22b9f218b40614adcb3f4ff08b703773ad44fa9423e4e0d346d5db86e4ebc"

View File

@ -1,17 +0,0 @@
[package]
name = "cup"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
enum-map = "2.4.2"
fastrand = "1.8.0"
# [profile.release]
# lto = true
[profile.perf]
inherits = "release"
debug = true

View File

@ -1,12 +1,10 @@
# `cup` - CamelUp probability calculator
This tool calculates probable outcomes for the board game CamelUp. It can
calculate all possible outcomes for a single game leg in about 5ms, so
effectively instantaneously. Full-game calculations take a little bit longer
and are not exact (since it isn't practical to simulate all possible full
game states.) However it can easily simulate a million random games in about
80ms in the worst case, which should provide estimates accurate to within
about 0.2%. (Numbers from running on a Ryzen 3700X.)
This tool calculates probable outcomes for the board game CamelUp.
It can calculate all possible outcomes for a single game leg in about 5ms, so effectively instantaneously.
Full-game calculations take a little bit longer and are not exact (since it isn't practical to simulate all possible full game states.)
However it can easily simulate a million random games in about 80ms in the worst case, which should provide estimates accurate to within about 0.2%.
(Numbers from running on a Ryzen 3700X.)
```
Usage:

17
colors.nim Normal file
View File

@ -0,0 +1,17 @@
type
Color* = enum
cRed, cGreen, cBlue, cYellow, cPurple
const
colorNames: array[Color, string] =
["Red", "Green", "Blue", "Yellow", "Purple"]
colorAbbrevs: array[Color, char] = ['R', 'G', 'B', 'Y', 'P']
proc `$`*(c: Color): string =
result = colorNames[c]
proc abbrev*(c: Color): char =
result = colorAbbrevs[c]

96
combinators.nim Normal file
View File

@ -0,0 +1,96 @@
import algorithm, random, sugar
import fixedseq, game
proc nextPermutation(x: var FixedSeq): bool =
# copied shamelessly from std/algorithm.nim
if x.len < 2:
return false
var i = x.high
while i > 0 and x[i - 1] >= x[i]:
dec i
if i == 0:
return false
var j = x.high
while j >= i and x[j] <= x[i - 1]:
dec j
swap x[j], x[i - 1]
x.reverse(i, x.high)
result = true
proc prevPermutation(x: var FixedSeq): bool =
# copied shamelessly from std/algorithm.nim
if x.len < 2:
return false
var i = x.high
while i > 0 and x[i - 1] <= x[i]:
dec i
if i == 0:
return false
x.reverse(i, x.high)
var j = x.high
while j >= i and x[j - 1] < x[i - 1]:
dec j
swap x[i - 1], x[j]
result = true
iterator allPermutations*(x: FixedSeq): FixedSeq =
# returns all permutations of a given seq. Order is wonky but we don't care.
var workingCopy = x
yield workingCopy
while workingCopy.nextPermutation: # this mutates workingCopy
yield workingCopy
workingCopy = x
while workingCopy.prevPermutation:
yield workingCopy
iterator allDigits*(lo, hi, size: Natural): auto =
if size > 0: # otherwise we get an infinite loop
var digits: FixedSeq[5, int, int8]
digits.initFixedSeq
for i in 0 ..< size:
digits.add(lo)
var complete = false
while not complete:
yield digits
for i in countdown(digits.high, 0):
if digits[i] < hi:
inc digits[i]
break
elif i == 0: # since this is the last digit to be incremented, we must be done
complete = true
else:
digits[i] = lo
iterator possibleFutures*(dice: FixedSeq): auto =
# iterate over all possible sequences of die rolls. Each outcome
# is returned as a 5-sequence of (color, number) tuples.
for perm in dice.allPermutations:
for digits in allDigits(1, 3, dice.len):
var f = initFixedSeq(5, Die, int8)
for i in 0 .. dice.high:
f.add((perm[i], digits[i]))
yield f
proc randomFuture*(dice: FixedSeq, r: var Rand): FixedSeq[5, Die, int8] =
result.initFixedSeq
let order = dice.dup(shuffle(r))
for i, color in order:
result.add((color, r.rand(1..3)))

5
config.nims Normal file
View File

@ -0,0 +1,5 @@
--threads: on
--d: release
--opt: speed
--passC: -flto
--passL: -flto

17
cup.nim Normal file
View File

@ -0,0 +1,17 @@
import game, simulation, ui
when isMainModule:
let config = parseArgs()
var b: Board
b.init
b.setState(config.state, [])
b.diceRolled = config.diceRolled
echo b.showSpaces(1, 16)
let legScores = b.getLegScores
echo "\nCurrent leg probabilities:"
echo legScores.showPercents()
let gameScores = b.randomGames(1_000_000)
echo "\nFull game probabilities (1M simulations):"
echo gameScores.showPercents()

158
fixedseq.nim Normal file
View File

@ -0,0 +1,158 @@
import random
type
FixedSeq*[Idx: static int; Contents; Pointer: SomeSignedInt] = object
data: array[Idx, Contents]
last: Pointer
proc initFixedSeq*(size: static Natural; cType: typedesc; pType: typedesc[SomeSignedInt]): auto =
var s: FixedSeq[size, cType, pType]
s.last = -1
result = s
proc initFixedSeq*(s: var FixedSeq) =
s.last = -1
proc `$`*(s: FixedSeq): string =
result.add("FixedSeq[")
for i, item in s:
if i != 0:
result.add(", ")
result.add($item)
result.add("]")
proc `==`*[T1: FixedSeq, T2: FixedSeq](a: T1, b: T2): bool =
# generics are so that we can compare ShiftStack vs regular FixedSeq
if a.len != b.len:
return false
for i in 0 ..< a.len:
if a.data[i] != b.data[i]:
return false
return true
proc `[]`*(s: FixedSeq, i: Natural): FixedSeq.Contents =
if i > s.last:
raise newException(IndexDefect, "index " & $i & " is out of bounds.")
s.data[i]
proc `[]`*(s: var FixedSeq, i: Natural): var FixedSeq.Contents =
if i > s.last:
raise newException(IndexDefect, "index " & $i & " is out of bounds.")
s.data[i]
proc `[]`*(s: FixedSeq, i: BackwardsIndex): auto =
if s.last == -1:
raise newException(IndexDefect, "index out of bounds, the container is empty.") # matching stdlib again
s.data[s.last - typeof(s.last)(i) + 1]
proc `[]=`*(s: var FixedSeq, i: Natural, v: FixedSeq.Contents) =
if i > s.last:
raise newException(IndexDefect, "index " & $i & " is out of bounds.")
s.data[i] = v
proc high*(s: FixedSeq): auto =
result = s.last
proc low*(s: FixedSeq): auto =
result = case s.last
of -1: 0 # a bit weird but it's how the stdlib seq works
else: s.last
proc len*(s: FixedSeq): auto =
result = s.last + 1
iterator items*(s: FixedSeq): auto =
for i in 0 .. s.last:
yield s.data[i]
iterator asInt*(s: FixedSeq): int8 =
for i in 0 .. s.last:
yield int8(s.data[i]) # now we do have to convert
iterator pairs*(s: FixedSeq): auto =
var count = 0
for c in s:
yield (count, c)
inc count
proc add*(s: var FixedSeq, v: FixedSeq.Contents) =
let i = s.last + 1
s.data[i] = v # will raise exception if out of bounds
s.last = i
proc insert*(s: var FixedSeq, v: FixedSeq.Contents, idx: Natural = 0) =
for i in countdown(s.last, typeof(s.last)(idx)):
swap(s.data[i], s.data[i + 1]) # will also raise exception if out of bounds
s.data[idx] = v
inc s.last
proc delete*(s: var FixedSeq, idx: Natural) =
if idx > s.last:
raise newException(IndexDefect, "index " & $idx & " is out of bounds.")
s.data[idx] = -1
dec s.last
for i in typeof(s.last)(idx) .. s.last:
swap(s.data[i], s.data[i + 1])
proc find*(s: FixedSeq, needle: FixedSeq.Contents): FixedSeq.Pointer =
for i, v in s.data:
if v == needle:
return i
return -1
proc reverse*(s: var FixedSeq; first, last: Natural) =
# copied shamelessly from std/algorithm.nim
var x = first
var y = last
while x < y:
swap(s[x], s[y])
inc x
dec y
proc shuffle*(s: var FixedSeq, r: var Rand) =
r.shuffle(s.data)
proc moveSubstack*(src, dst: var FixedSeq; start: Natural) =
var count: FixedSeq.Pointer = 0 # have to track this separately apparently
for idx in start .. src.last:
swap(src.data[idx], dst.data[dst.last + 1 + count])
inc count
dst.last += count
src.last -= count
proc moveSubstackPre*(src, dst: var FixedSeq; start: Natural) =
let ssLen = FixedSeq.Pointer(src.last - start + 1) # length of substack
for i in countdown(dst.last, 0):
swap(dst.data[i], dst.data[i + ssLen])
var count = 0
for i in start .. src.last:
swap(src.data[i], dst.data[count])
inc count
dst.last += ssLen
src.last -= ssLen
include shiftstack

139
game.nim Normal file
View File

@ -0,0 +1,139 @@
import hashes, options
import fixedseq, colors
export colors
type
ColorStack* = FixedSeq[5, Color, int8]
proc initColorStack*: ColorStack =
result.initFixedSeq
proc `$`*[T](s: FixedSeq[T, Color, int8]): string =
result.add("St@[")
for i, color in s:
result.add($color)
if i < s.high:
result.add(", ")
result.add("]")
type
Die* = tuple[color: Color, value: int]
Tile* = enum
tBackward = -1,
tForward = 1
Square* = object
camels*: ShiftStack
tile*: Option[Tile]
Board* = object
squares*: array[1..16, Square]
camels*: array[Color, range[1..16]]
diceRolled*: array[Color, bool]
leader*: Option[Color]
gameOver*: bool
initialized: bool
# use a template here for better inlining
template `[]`*[T](b: var Board, idx: T): var Square =
b.squares[idx]
proc hash*(b: Board): Hash =
var h: Hash = 0
# there could be a tile anywhere so we have to check all squares
for i, sq in b.squares:
if sq.camels.len > 0 or sq.tile.isSome:
h = h !& i
if sq.tile.isSome:
h = h !& int(sq.tile.get) * 10 # so it isn't confused with a camel
else:
for c in sq.camels.asInt:
h = h !& c
result = !$h
proc init*(b: var Board) =
for sq in b.squares.mitems:
sq.camels.initFixedSeq
b.initialized = true
proc display*(b: Board, start, stop: int) =
for i in start..stop:
let sq = b.squares[i]
let lead = $i & ": "
if sq.tile.isSome:
stdout.writeLine($lead & $sq.tile.get)
else:
stdout.writeLine($lead & $sq.camels)
echo ""
proc setState*(b: var Board;
camels: openArray[tuple[c: Color, p: int]];
tiles: openArray[tuple[t: Tile, p: int]]) =
for (color, dest) in camels: # note that `camels` is ordered, as this determines stacking
b[dest].camels.add(color)
b.camels[color] = dest
for (tile, dest) in tiles:
b[dest].tile = some(tile)
let leadCamel = b[max(b.camels)].camels[^1] # top camel in the last currently-occupied space
b.leader = some(leadCamel)
proc diceRemaining*(b: Board): ColorStack =
result.initFixedSeq
for color, isRolled in b.diceRolled:
if not isRolled: result.add(color)
proc resetDice*(b: var Board) =
for c, rolled in b.diceRolled:
b.diceRolled[c] = false
proc advance*(b: var Board, die: Die) =
let
(color, roll) = die
startPos = b.camels[color]
var endPos = startPos + roll
if endPos > 16: # camel has passed the finish line
b.leader = some(b[startPos].camels[^1])
b.gameOver = true
return
var prepend = false
if b[endPos].tile.isSome: # adjust position (and possibly stacking) to account for tile
let t = b[endPos].tile.get
endPos += int(t)
if t == tBackward: prepend = true
let stackStart = b[startPos].camels.find(color)
if prepend:
b[startPos].camels.moveSubstackPre(b[endPos].camels, stackStart)
let stackLen = b[startPos].camels.len - stackStart
for i in 0 ..< stackLen:
# we know how many camels we added to the bottom, so set the position for each of those
b.camels[b[endPos].camels[i]] = endPos
else:
let dstPrevHigh = b[endPos].camels.high
b[startPos].camels.moveSubstack(b[endPos].camels, stackStart)
# the camels that have moved start immediately after the previous high camel
for i in (dstPrevHigh + 1) .. b[endPos].camels.high:
b.camels[b[endPos].camels[i]] = endPos
# if we are stacking on or moving past the previous leader
if endPos >= b.camels[b.leader.get]:
b.leader = some(b[endPos].camels[^1])
b.diceRolled[color] = true

191
shiftstack.nim Normal file
View File

@ -0,0 +1,191 @@
# optimized bit-shifting versions of the FixedSequence substack operations
import bitops, macros
import colors
macro show(expr: untyped) =
let node = expr.toStrLit
quote do:
echo `node`, " => ", `expr`
proc getMasks(): (array[9, uint64], array[9, uint64]) =
# on little-endian architectures, casting an array[8, Color] to uint64 effectively
# reverses it. So we switch these masks so that we can refer to them consistently.
let
left = [
0'u64,
0xff_00_00_00_00_00_00_00'u64,
0xff_ff_00_00_00_00_00_00'u64,
0xff_ff_ff_00_00_00_00_00'u64,
0xff_ff_ff_ff_00_00_00_00'u64,
0xff_ff_ff_ff_ff_00_00_00'u64,
0xff_ff_ff_ff_ff_ff_00_00'u64,
0xff_ff_ff_ff_ff_ff_ff_00'u64,
0xff_ff_ff_ff_ff_ff_ff_ff'u64,
]
right = [
0'u64,
0x00_00_00_00_00_00_00_ff'u64,
0x00_00_00_00_00_00_ff_ff'u64,
0x00_00_00_00_00_ff_ff_ff'u64,
0x00_00_00_00_ff_ff_ff_ff'u64,
0x00_00_00_ff_ff_ff_ff_ff'u64,
0x00_00_ff_ff_ff_ff_ff_ff'u64,
0x00_ff_ff_ff_ff_ff_ff_ff'u64,
0xff_ff_ff_ff_ff_ff_ff_ff'u64,
]
when cpuEndian == bigEndian:
result = (left, right)
when cpuEndian == littleEndian:
result = (right, left)
type ShiftStack* = FixedSeq[8, Color, int8]
const (masksLeft, masksRight) = getMasks()
template `shl`(a: array[8, Color], offset: Natural): array[8, Color] =
when cpuEndian == bigEndian:
cast[array[8, Color]](cast[uint64](a) shl (offset * 8))
when cpuEndian == littleEndian: # direction is reversed
cast[array[8, Color]](cast[uint64](a) shr (offset * 8))
template `shr`(a: array[8, Color], offset: Natural): array[8, Color] =
when cpuEndian == bigEndian:
cast[array[8, Color]](cast[uint64](a) shr (offset * 8))
when cpuEndian == littleEndian:
cast[array[8, Color]](cast[uint64](a) shl (offset * 8))
template `and`(a: array[8, Color], mask: uint64): array[8, Color] =
cast[array[8, Color]](cast[uint64](a) and mask)
template `or`(a: array[8, Color], mask: uint64): array[8, Color] =
cast[array[8, Color]](cast[uint64](a) or mask)
template `or`(a: array[8, Color], mask: array[8, Color]): array[8, Color] =
cast[array[8, Color]](cast[uint64](a) or cast[uint64](mask))
import strutils # remove later
proc moveSubstack*(src, dst: var ShiftStack; start: Natural) =
# shift the source stack to position the substack above its final resting place
# offset is the length of the destination stack, minus the number of items NOT being moved
# number of items not being moved is the same as the start index
var substack: array[8, Color]
if dst.len == start: # no shift necessary in this case
substack = src.data
elif dst.len > start:
substack = src.data shr (dst.len - start)
elif dst.len < start:
substack = src.data shl (start - dst.len)
# next, mask the source data to present only the items being moved
# dst.len of 0 corresponds to last mask in masksRight, aka masksRight[^1]
substack = substack and masksRight[^(dst.len + 1)]
# then combine
dst.data = dst.data or substack
# then git rid of the moved items from the source stack
src.data = src.data and masksLeft[start]
# a little bookkeeping
let ssLen = int8(src.len - start)
src.last -= ssLen
dst.last += ssLen
proc moveSubstackPre*(src, dst: var ShiftStack; start: Natural) =
let ssLen = int8(src.len - start)
# shift the destination stack to make room for the new items
dst.data = dst.data shr ssLen
# shift source stack to line up the substack with its final resting place
let substack = src.data shl start
# combine
dst.data = dst.data or substack
# get rid of the moved items
src.data = src.data and masksLeft[start]
# more bookkeeping
src.last -= ssLen
dst.last += ssLen
proc testMove[T1, T2: FixedSeq](a1, a2: var T1; b1, b2: var T2; i: Natural): bool =
let (orig_a1, orig_a2) = (a1, a2)
let (orig_b1, orig_b2) = (b1, b2)
a1.moveSubstack(a2, i)
b1.moveSubstack(b2, i)
if a1 != b1 or a2 != b2:
echo "Failed!"
show orig_b1
show orig_b2
echo "<<move ", i, ">>"
show b1
show b2
return false
return true
when isMainModule:
var c1 = initFixedSeq(5, Color, int8)
var c2 = initFixedSeq(5, Color, int8)
var s1: ShiftStack
s1.initFixedSeq
var s2: ShiftStack
s2.initFixedSeq
c1.add(cPurple)
c1.add(cRed)
c1.add(cYellow)
c1.add(cBlue)
c1.add(cGreen)
s1.add(cPurple)
s1.add(cRed)
s1.add(cYellow)
s1.add(cBlue)
s1.add(cGreen)
# show s1
# show s2
# echo "<<move 2>>"
# s1.moveSubstack(s2, 2)
# show s1
# show s2
import random
randomize()
var r = initRand(rand(int64))
var success = true
for n in 1 .. 1_000_000:
var ranFirst, ranSecond: bool
if c1.len > 0:
let i = r.rand(c1.high)
ranFirst = true
if not testMove(c1, c2, s1, s2, i):
success = false
echo "Failed after ", n, " iterations."
break
else:
ranFirst = false
if c2.len > 0:
let j = r.rand(c2.high)
ranSecond = true
if not testMove(c2, c1, s2, s1, j):
success = false
echo "Failed after ", n, " iterations."
break
else:
ranSecond = false
if (not ranFirst) and (not ranSecond):
echo "Ran neither first nor second move."
break
if success:
echo "Success."

138
simulation.nim Normal file
View File

@ -0,0 +1,138 @@
import cpuinfo, math, options, random, tables
import combinators, game, fixedseq
type
ScoreSet* = array[Color, int]
WinPercents* = array[Color, float]
ScoreSpread = object
lo*: array[Color, float]
hi*: array[Color, float]
LegResults* = tuple[scores: ScoreSet, endStates: CountTable[Board]]
proc update*(scores: var ScoreSet, toAdd: ScoreSet) =
for i, s in toAdd:
scores[i] += s
proc display*(scores: ScoreSet) =
let total = scores.sum
for color, score in scores:
let line = $color & ": " & $round(100 * scores[color] / total, 2) & '%'
stdout.writeLine(line)
stdout.flushFile()
# echo color, ": ", round(100 * scores[color] / total, 2), '%'
proc percents*(scores: ScoreSet): WinPercents =
let total = scores.sum
for c, score in scores:
result[c] = score / total
# ======================
# Single-leg simulations
# ======================
iterator legEndStates(b: Board): Board =
var diceRemaining: ColorStack
diceRemaining.initFixedSeq
for i, c in b.diceRolled:
if not c: diceRemaining.add(i)
for future in possibleFutures(diceRemaining):
var prediction = b # make a copy so we can mutate
for dieRoll in future:
prediction.advance(dieRoll)
yield prediction
proc getLegScores*(b: Board): ScoreSet =
for prediction in b.legEndStates:
inc result[prediction.leader.get]
# =====================
# Full-game simulations
# =====================
proc randomGame*(b: Board, r: var Rand): Color =
var projection = b
while true:
for roll in randomFuture(projection.diceRemaining, r):
projection.advance(roll)
if projection.gameOver:
return projection.leader.get
projection.resetDice()
proc randomGamesWorker(b: Board, count: Natural, r: var Rand): ScoreSet =
for i in 1 .. count:
let winner = b.randomGame(r)
inc result[winner]
# =======================
# Multithreading nonsense
# =======================
type WorkerArgs = object
board: Board
count: Natural
seed: int64
# have to do this at the module level so it can be shared
var gamesChannel: Channel[ScoreSet]
gamesChannel.open()
proc randomGamesThread(args: WorkerArgs) =
var r = initRand(args.seed)
let scores = randomGamesWorker(args.board, args.count, r)
gamesChannel.send(scores)
proc randomGames*(b: Board, count: Natural, parallel = true, numThreads = 0): ScoreSet =
randomize()
if not parallel:
var r = initRand(rand(int64))
return randomGamesWorker(b, count, r)
let numThreads =
if numThreads == 0:
countProcessors()
else:
numThreads
var workers = newSeq[Thread[WorkerArgs]](numThreads)
for i, w in workers.mpairs:
var numGames = int(floor(count / numThreads))
if i < (count mod numThreads):
numGames += 1
let args = WorkerArgs(board: b, count: numGames, seed: rand(int64))
createThread(w, randomGamesThread, args)
for i in 1 .. numThreads:
let scores = gamesChannel.recv()
result.update(scores)
proc randomSpread*(b: Board; nTests, nSamples: Natural): ScoreSpread =
for s in result.lo.mitems:
s = 1
for i in 0 ..< nTests:
let scores = b.randomGames(nSamples)
let total = scores.sum
for color, score in scores:
let pct = score / total
if pct < result.lo[color]:
result.lo[color] = pct
if pct > result.hi[color]:
result.hi[color] = pct

View File

@ -1,375 +0,0 @@
use enum_map::{Enum, EnumMap};
use fastrand::Rng;
use crate::stack::Stack;
#[derive(Debug, Copy, Clone, Eq, PartialEq, Default, Enum)]
pub enum Color {
#[default] Red, Green, Blue, Yellow, Purple,
}
// const COLORS: Stack<Color, 5> = Stack::from_array([
// Color::Red,
// Color::Green,
// Color::Blue,
// Color::Yellow,
// Color::Purple,
// ]);
const COLORS: [Color; 5] = [
Color::Red,
Color::Green,
Color::Blue,
Color::Yellow,
Color::Purple,
];
type ColorStack = Stack<Color, 5>;
#[derive(Debug, Copy, Clone)]
pub enum Tile {
Forward,
Backward,
}
#[derive(Debug, Copy, Clone)]
pub enum Square {
Camels(ColorStack),
Tile(Tile),
}
impl Square {
fn assume_stack(&self) -> &ColorStack {
match self {
Square::Camels(stack) => stack,
_ => panic!("Attempted to use the stack from a non-stack square"),
}
}
fn assume_stack_mut(&mut self) -> &mut ColorStack {
match self {
Square::Camels(stack) => stack,
_ => panic!("Attempted to use the stack from a non-stack square"),
}
}
}
impl Default for Square {
fn default() -> Self {
Square::Camels(ColorStack::new())
}
}
#[derive(Debug, Default, Copy, Clone)]
pub struct Game {
squares: [Square; 16],
dice: EnumMap<Color, bool>,
camels: EnumMap<Color, usize>,
}
impl Game {
pub fn new() -> Self {
Self::default()
}
// new game with random starting positions
pub fn new_random() -> Self {
let mut game = Self::default();
let rng = Rng::new();
let mut dice = *&COLORS;
rng.shuffle(&mut dice);
for color in dice {
let roll = rng.usize(1..=3);
game.squares[roll - 1].assume_stack_mut().push(color);
game.camels[color] = roll - 1;
}
game
}
pub fn set_state(&mut self, camels: &[(Color, usize); 5], dice: &EnumMap<Color, bool>) {
for i in 0..16 {
self.squares[i] = match self.squares[i] {
Square::Camels(mut stack) => {
stack.clear();
Square::Camels(stack)
},
_ => Square::Camels(Stack::new())
};
}
for square in self.squares {
assert_eq!(square.assume_stack().len(), 0)
}
self.dice = *dice;
for &(color, sq) in camels {
self.squares[sq].assume_stack_mut().push(color);
self.camels[color] = sq;
}
}
pub fn get_state(&self) -> ([(Color, usize); 5], EnumMap<Color, bool>) {
let mut state = [(Color::Red, 0); 5];
let mut j = 0;
for (sq_idx, square) in self.squares.iter().enumerate() {
if let Square::Camels(stack) = square {
for camel in stack.iter() {
state[j] = (*camel, sq_idx);
j += 1;
}
}
}
(state, self.dice)
}
// returns winner if there is one
pub fn advance(&mut self, die: Color, roll: usize) -> Option<Color> {
let src_sq = self.camels[die];
let dst_sq = src_sq + roll;
if dst_sq >= 16 {
self.dice[die] = true;
return self.squares[src_sq].assume_stack().last().copied();
}
// special case when the destination square is the same as the source square
if let Square::Tile(Tile::Backward) = self.squares[dst_sq] {
if roll == 1 {
let src_stack = self.squares[src_sq].assume_stack_mut();
let slice_start = src_stack.iter().position(|&c| c == die).unwrap();
src_stack.shift_slice_under(slice_start);
}
}
else {
// we have to split self.squares into two slices using split_at_mut, otherwise
// rustc complains that we're trying to use two mutable references to the same value
let (left, right) = self.squares.split_at_mut(src_sq + 1);
let src_stack = left[src_sq].assume_stack_mut();
let slice_start = src_stack.iter().position(|&c| c == die).unwrap();
// since `right` starts immediately after the source square, the index of the
// destination square will be roll - 1 (e.g. if roll is 1, dst will be right[0])
let (dst_rel_idx, prepend) = match right[roll - 1] {
Square::Tile(Tile::Forward) => (roll, false), // roll - 1 + 1
Square::Tile(Tile::Backward) => (roll - 2, true), // roll is guaranteed to be >= 2 since we already handled roll == 1
_ => (roll - 1, false),
};
let dst_stack = right[dst_rel_idx].assume_stack_mut();
let dst_true_idx = src_sq + 1 + dst_rel_idx; // src_sq + 1 was the original split boundary, so add the relative index to that to get the true index
if prepend {
let slice_len = src_stack.len() - slice_start;
src_stack.move_slice_under(dst_stack, slice_start);
for i in 0..slice_len {
self.camels[dst_stack[i]] = dst_true_idx;
}
}
else {
let dst_prev_len = dst_stack.len();
src_stack.move_slice(dst_stack, slice_start);
for i in dst_prev_len..dst_stack.len() {
self.camels[dst_stack[i]] = dst_true_idx;
}
}
}
self.dice[die] = true;
None
}
fn finish_leg_random(&mut self, rng: &Rng) -> Option<Color> {
let mut leg_dice: Stack<Color, 5> = Stack::new();
for (color, rolled) in self.dice {
if !rolled {
leg_dice.push(color);
}
}
rng.shuffle(&mut leg_dice[..]);
for color in leg_dice.iter() {
let roll = rng.usize(1..=3);
if let Some(winner) = self.advance(*color, roll) {
return Some(winner);
}
}
None
}
fn finish_game_random(&mut self, rng: &Rng) -> Color {
if let Some(winner) = self.finish_leg_random(rng) {
return winner;
}
let mut dice = COLORS; // makes a copy of the constant
// we are now guaranteed to be at the start of a new leg,
// so we don't need to check the dice state
loop {
// easiest if we shuffle at the start of the leg
rng.shuffle(&mut dice);
for i in 0..5 {
let roll = rng.usize(1..=3);
if let Some(winner) = self.advance(dice[i], roll) {
return winner;
}
}
}
}
pub fn project_outcomes(&self, count: usize) -> EnumMap<Color, usize> {
let (orig_camels, orig_dice) = self.get_state();
let mut projection = *self;
let mut scores: EnumMap<Color, usize> = EnumMap::default();
let rng = Rng::new();
for i in 0..count {
let winner = projection.finish_game_random(&rng);
scores[winner] += 1;
projection.set_state(&orig_camels, &orig_dice);
}
scores
}
}
#[cfg(test)]
mod test {
use super::*;
use Color::*;
#[test]
fn test_advance() {
let mut game = Game::new();
// all dice are false (not rolled) to start with
assert_eq!(game.dice.values().any(|&v| v), false);
let camel_state = [
(Blue, 0),
(Yellow, 0),
(Red, 1),
(Green, 2),
(Purple, 2),
];
game.set_state(&camel_state, &Default::default());
assert_eq!(game.squares[0].assume_stack(), &Stack::from([Blue, Yellow]));
assert_eq!(game.camels[Blue], 0);
assert_eq!(game.camels[Yellow], 0);
assert_eq!(game.squares[1].assume_stack(), &Stack::from([Red]));
assert_eq!(game.camels[Red], 1);
assert_eq!(game.squares[2].assume_stack(), &Stack::from([Green, Purple]));
assert_eq!(game.camels[Green], 2);
assert_eq!(game.camels[Purple], 2);
// BY, R, GP
game.advance(Yellow, 2);
assert_eq!(game.dice[Yellow], true);
assert_eq!(game.camels[Yellow], 2);
assert_eq!(game.squares[2].assume_stack(), &Stack::from([Green, Purple, Yellow]));
// B, R, GPY
game.advance(Red, 2);
assert_eq!(game.dice[Red], true);
assert_eq!(game.camels[Red], 3);
// B, _, GPY, R
game.advance(Purple, 1);
assert_eq!(game.dice[Purple], true);
assert_eq!(game.squares[3].assume_stack(), &Stack::from([Red, Purple, Yellow]));
// B, _, G, RPY
}
#[test]
fn test_new_random() {
for _ in 0..100 {
let game = Game::new_random();
for (camel, i) in game.camels {
assert!(i < 3); // since we've only rolled the die once for each camel
let stack = game.squares[i].assume_stack();
assert!(stack[..].contains(&camel));
}
}
}
#[test]
fn test_finish_leg() {
let mut game = Game::new();
let camel_state = [
(Purple, 0),
(Blue, 0),
(Green, 1),
(Red, 1),
(Yellow, 2),
];
game.set_state(&camel_state, &Default::default());
// PB, G, RY
game.advance(Green, 2);
// PB, _, RY, G
game.advance(Purple, 1);
// _, PB, RY, G
// since this is randomized, we should do it a bunch of times to make sure
for _ in 0..100 {
let mut projection = game; // copy?
assert_eq!(projection.squares[1].assume_stack(), &Stack::from([Purple, Blue]));
let rng = Rng::new();
projection.finish_leg_random(&rng);
// since we already rolled Green, it can't have moved
assert_eq!(projection.camels[Green], 3);
// likewise purple
assert_eq!(projection.camels[Purple], 1);
// blue, red,and yellow, on the other hand, *must* have moved
assert_ne!(projection.camels[Blue], 1);
assert_ne!(projection.camels[Red], 2);
assert_ne!(projection.camels[Yellow], 2);
}
}
#[test]
fn test_finish_leg_winner() {
let mut game = Game::new();
let camel_state = [
(Green, 13),
(Red, 14),
(Purple, 14),
(Blue, 15),
(Yellow, 15),
];
game.set_state(&camel_state, &Default::default());
// since there are no tiles involved, and multiple camels are on 15, there must be a winner
let rng = Rng::new();
assert!(matches!(game.finish_leg_random(&rng), Some(_)));
}
#[test]
fn test_project_outcomes() {
let mut game = Game::new();
let camel_state = [
(Blue, 1),
(Green, 2),
(Yellow, 2),
(Purple, 4),
(Red, 10),
];
game.set_state(&camel_state, &Default::default());
// _, B, GY, _, P, _, _, _, _, _, R
let scores = game.project_outcomes(10_000);
let mut max = 0;
let mut winner = Blue; // just "anything that's not red"
for (color, score) in scores {
if score > max {
max = score;
winner = color;
}
}
assert_eq!(winner, Red);
}
}

View File

@ -1,40 +0,0 @@
use std::time::Instant;
mod stack;
mod game;
use game::{Game, Color::*};
fn main() {
let n_games = 200_000;
let game = Game::new_random();
// let mut game = Game::new();
// let camel_state = [
// (Blue, 5),
// (Purple, 5),
// (Red, 7),
// (Yellow, 8),
// (Green, 10),
// ];
// game.set_state(&camel_state, &Default::default());
let start = Instant::now();
let scores = game.project_outcomes(n_games);
let end = Instant::now();
let elapsed = end.duration_since(start);
let secs = (elapsed.as_secs_f64() * 100f64).round() / 100f64;
let rate = (n_games as f64) / elapsed.as_secs_f64();
println!("Test completed:");
println!("{n_games} in {secs} seconds", );
println!("Games per second: {rate}\n");
let total = scores.values().sum::<usize>() as f64;
for (color, score) in scores {
let fract = (score as f64) / total;
let pct = (fract * 10_000f64).round() / 100f64;
println!("{color:?}: {pct}%");
}
}

View File

@ -1,265 +0,0 @@
use std::ops::{Index, IndexMut, RangeFull};
use std::iter::IntoIterator;
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct Stack<T, const S: usize> {
data: [T; S],
len: usize // we can experiment with using u8 some other time
}
impl<T, const S: usize> Stack<T, S> {
pub fn push(&mut self, v: T) {
self.data[self.len] = v;
self.len += 1;
}
pub fn len(&self) -> usize {
self.len
}
pub fn clear(&mut self) {
self.len = 0;
}
pub fn last(&self) -> Option<&T> {
if self.len == 0 {
None
}
else {
Some(&self.data[self.len - 1])
}
}
pub fn iter(&self) -> impl Iterator<Item = &T> {
self.data.iter().take(self.len)
}
pub const fn from_array(array: [T; S]) -> Self {
Stack {
data: array,
len: S,
}
}
pub fn into_inner(self) -> [T; S] {
self.data
}
}
impl<T, const S: usize> Stack<T, S>
where T: Copy + Default
{
pub fn new() -> Self {
Stack {
data: [Default::default(); S],
len: 0,
}
}
pub fn move_slice(&mut self, dst: &mut Self, start: usize) {
let slice_len = self.len - start;
let src_slice = &mut self.data[start..self.len];
let dst_slice = &mut dst.data[dst.len..(dst.len + slice_len)];
dst_slice.copy_from_slice(src_slice);
self.len -= slice_len;
dst.len += slice_len;
}
pub fn move_slice_under(&mut self, dst: &mut Self, start: usize) {
let slice_len = self.len - start;
let src_slice = &mut self.data[start..self.len];
dst.data.rotate_right(slice_len);
let dst_slice = &mut dst.data[0..slice_len];
dst_slice.copy_from_slice(src_slice);
self.len -= slice_len;
dst.len += slice_len;
}
// like above, except source and destination are the same, i.e. reordering the stack
pub fn shift_slice_under(&mut self, start: usize) {
for mut i in start..self.len {
while i > 0 {
self.data.swap(i, i -1);
i -= 1;
}
}
}
}
impl<T, const S: usize> Default for Stack<T, S>
where T: Copy + Default
{
fn default() -> Self {
Self::new()
}
}
impl<T, const S: usize> Index<usize> for Stack<T, S> {
type Output = T;
fn index(&self, index: usize) -> &T {
&self.data[index]
}
}
impl<T, const S: usize> Index<RangeFull> for Stack<T, S> {
type Output = [T];
fn index(&self, _index: RangeFull) -> &[T] {
&self.data[..self.len]
}
}
impl<T, const S: usize> IndexMut<RangeFull> for Stack<T, S> {
fn index_mut(&mut self, _index: RangeFull) -> &mut [T] {
&mut self.data[..self.len]
}
}
impl<I, T, const S: usize> From<I> for Stack<T, S>
where
T: Copy + Default,
I: IntoIterator<Item = T>
{
fn from(src: I) -> Self {
let mut res = Self::new();
for (i, item) in src.into_iter().enumerate() {
if i >= S {
break;
}
res.push(item);
}
res
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_basic() {
let mut stack: Stack<usize, 5> = Stack::new();
stack.push(1);
stack.push(2);
stack.push(3);
assert_eq!(stack.len(), 3);
assert_eq!(stack[0], 1);
assert_eq!(stack[1], 2);
assert_eq!(stack[2], 3);
assert_eq!(stack.last(), Some(&3));
stack.clear();
assert_eq!(stack.len(), 0);
}
#[test]
fn test_move_slice() {
let mut a: Stack<usize, 5> = Stack::new();
let mut b: Stack<usize, 5> = Stack::new();
a.push(1);
a.push(2);
a.push(3);
b.push(9);
b.push(8);
a.move_slice(&mut b, 1);
assert_eq!(b[2], 2);
assert_eq!(b[3], 3);
b.move_slice(&mut a, 1);
assert_eq!(a[1], 8);
assert_eq!(a[2], 2);
assert_eq!(a[3], 3);
a.move_slice(&mut b, 0);
assert_eq!(a.len(), 0);
assert_eq!(b[0], 9);
assert_eq!(b.last(), Some(&3));
}
#[test]
fn test_move_slice_under() {
let mut a: Stack<usize, 5> = Stack::new();
let mut b: Stack<usize, 5> = Stack::new();
a.push(1);
a.push(2);
a.push(3);
b.push(9);
b.push(8);
a.move_slice_under(&mut b, 1);
assert_eq!(a.len(), 1);
assert_eq!(a[0], 1);
assert_eq!(b.len(), 4);
assert_eq!(b[0], 2);
assert_eq!(b[3], 8);
b.move_slice_under(&mut a, 0);
assert_eq!(b.len(), 0);
assert_eq!(a[0], 2);
assert_eq!(a[4], 1);
}
fn test_shift_slice_under() {
let mut a: Stack<usize, 5> = Stack::from([1, 2, 3, 4, 5]);
a.shift_slice_under(3);
assert_eq!(a[0], 4);
assert_eq!(a[1], 5);
assert_eq!(a[2], 1);
assert_eq!(a[3], 2);
assert_eq!(a[4], 3);
}
#[test]
fn test_from_iter() {
let s = Stack::<_, 5>::from([1, 2, 3]);
assert_eq!(s[0], 1);
assert_eq!(s[2], 3);
let s = Stack::<_, 2>::from([1, 2, 3]);
assert_eq!(s.len(), 2);
assert_eq!(s[0], 1);
assert_eq!(s[1], 2);
}
#[test]
fn test_iter() {
let s = Stack::<_, 5>::from([1, 2, 3]);
let mut it = s.iter();
assert_eq!(it.next(), Some(&1));
assert_eq!(it.next(), Some(&2));
assert_eq!(it.next(), Some(&3));
assert_eq!(it.next(), None);
}
#[test]
fn test_from_array() {
let s = Stack::from_array([1, 2, 3]);
assert_eq!(s[0], 1);
assert_eq!(s[1], 2);
assert_eq!(s[2], 3);
assert_eq!(s.len(), 3);
}
#[test]
fn test_slice_index() {
let mut s = Stack::<_, 5>::from([3, 4, 5]);
assert_eq!(s[..], [3, 4, 5]);
assert_eq!(&mut s[..], &mut [3, 4, 5]);
}
}

95
test.nim Normal file
View File

@ -0,0 +1,95 @@
import math, random, strformat, times
import fixedseq, game, simulation, ui
proc randomDice(r: var Rand): seq[tuple[c: Color, p: int]] =
for c in Color:
let v = r.rand(1..3)
result.add((c, v))
result.shuffle
proc newRandomGame(r: var Rand): Board =
var dice: array[5, tuple[c: Color, p: int]]
for i in 0 .. 4:
dice[i] = (Color(i), r.rand(1..3))
result.init
result.setState(dice, [])
proc testGames(n: SomeInteger = 100): auto =
var r = initRand(rand(int64))
let dice = randomDice(r)
var b: Board
b.init
b.setState(dice, [])
b.display(1, 5)
let startTime = cpuTime()
let scores = b.randomGames(n, parallel = true)
result = cpuTime() - startTime
scores.display()
proc testLegs(n: Natural = 100): auto =
var boards: seq[Board]
var r = initRand(rand(int64))
for i in 1 .. n:
var b: Board
b.init
let dice = randomDice(r)
b.setState(dice, [])
boards.add(b)
stdout.write("Constructed: " & $i & "\r")
echo ""
echo "Running..."
let start = cpuTime()
for b in boards:
discard b.getLegScores
result = cpuTime() - start
proc testSpread(nTests, nSamples: Natural) =
var b: Board
b.init
var r = initRand(rand(int64))
let dice = randomDice(r)
b.setState(dice, [])
b.display(1, 5)
let spread = randomSpread(b, nTests, nSamples)
stdout.writeLine("Variance:")
for c in Color:
let variance = 100 * (spread.hi[c] - spread.lo[c])
stdout.writeLine(fmt"{c}: {round(variance, 2):.2f}%")
let diff = 100 * (max(spread.hi) - min(spread.lo))
stdout.writeLine(fmt"Win percentage differential: {round(diff, 2):.2f}%")
stdout.flushFile()
when isMainModule:
randomize()
# var r = initRand(rand(int64))
# let b = newRandomGame(r)
# b.display(1, 5)
# echo b.showSpaces(1, 16)
# let scores = b.getLegScores
# echo scores.showPercents
# let start_states = 2_000
# let executionTime = testLegs(start_states)
# echo "Execution time: ", executionTime
# echo "Leg simulations per second: ", float(start_states * 29_160) / executionTime
for i in 1 .. 1:
let num_games = 100_000_005
let executionTime = testGames(num_games)
echo "Execution time: ", executionTime
echo "Full-game simulations per second: ", float(num_games) / executionTime
echo ""
# testSpread(100, 1_000_000)

120
ui.nim Normal file
View File

@ -0,0 +1,120 @@
import os, math, strutils, strformat
import fixedseq, game, simulation
const help =
"""cup - Probability calculator for the board game CamelUp
Usage:
cup [-i] SPACE:STACK [...SPACE:STACK] [DICE]
SPACE refers to a numbered board space (1-16).
STACK refers to a stack of camel colors from bottom to top, e.g.
YBR (Yellow, Blue, Red, with Red on top).
DICE refers to the set of dice that have already been rolled,
e.g. GPR (Green, Purple, Red)
Options:
-i Interactive mode (currently unimplemented)
-h Show this message and exit
"""
# =============================
# User input parsing/validation
# =============================
type
CmdConfig* = object
state*: seq[tuple[c: Color, p: int]]
interactive*: bool
diceRolled*: array[Color, bool]
proc parseColor(c: char): Color =
case c:
of 'R', 'r':
return cRed
of 'G', 'g':
return cGreen
of 'B', 'b':
return cBlue
of 'Y', 'y':
return cYellow
of 'P', 'p':
return cPurple
else:
raise newException(ValueError, "Invalid camel color specified.")
proc parseArgs*(): CmdConfig =
for p in os.commandLineParams():
if p == "-h":
echo help
quit 0
elif p == "-i":
result.interactive = true
elif result.state.len < 5:
let splat = p.split(':')
let sq = splat[0]
let square = sq.parseInt
let colors = splat[1]
for c in colors:
let color = parseColor(c)
result.state.add((color, square))
else:
for c in p:
let color = parseColor(c)
result.diceRolled[color] = true
# ==========================
# Game state representations
# ==========================
proc showSpaces*(b: Board; start, stop: Natural): string =
let numSpaces = stop - start + 1
let width = 4 * numSpaces - 1
var lines: array[7, string]
# start by building up an empty board
for i in 0 .. 6: # gotta initialize the strings
lines[i] = newString(width)
for c in lines[i].mitems:
c = ' '
# fill in the dividers
lines[5] = repeat("=== ", numSpaces - 1)
lines[5].add("===")
# now populate the board
for sp in 0 ..< numSpaces:
# fill in the square numbers
let squareNum = sp + start
let cellMid = 4 * sp + 1
for i, chr in $squareNum:
lines[6][cellMid + i] = chr
# fill in the camel stacks
for i, color in b.squares[squareNum].camels:
let lineNum = 4 - i # lines go to 6, but bottom 2 are reserved
let repr = '|' & color.abbrev & '|'
for j, chr in repr:
lines[lineNum][cellMid - 1 + j] = chr
result = lines.join("\n")
proc showPercents*(scores: ScoreSet): string =
var lines: array[5, string]
for color, pct in scores.percents:
let label = align($color, 7) # e.g. " Green"
var bar = repeat(" ", 20)
let percentage = round(pct * 100, 2)
# populate the progress bar
let barFill = int(round(pct * 100 / 20))
for i in 0 ..< barFill:
bar[i] = '='
lines[int(color)] = fmt"{label}: [{bar}] {percentage}%"
result = lines.join("\n")